【題目】如圖,在四棱錐中,平面,AB=BC=1,PA=AD=2,點(diǎn)F為AD的中點(diǎn),.
(1)求證:平面;
(2)求點(diǎn)B到平面PCD的距離.
【答案】(1)證明見詳解;(2).
【解析】
(1)根據(jù)直線//,通過線線平行即可證明線面平行;
(2)轉(zhuǎn)換三棱錐的頂點(diǎn)為,利用等體積法求解點(diǎn)面距離.
(1)由題可知//,
又因?yàn)?/span>,為中點(diǎn),
故可得,
故四邊形為平行四邊形,
故//,
又因?yàn)?/span>平面,平面,
故//平面,即證.
(2)因?yàn)?/span>平面,
故為三棱錐的高,且;
又因?yàn)?/span>,
故
則三棱錐的體積.
又因?yàn)?/span>平面,平面,
故均為直角三角形,
故在中,由勾股定理可得;
在中,由勾股定理可得,
又因?yàn)樵?/span>中,.
則在中,因?yàn)?/span>,
故,則.
設(shè)點(diǎn)B到平面PCD的距離為,
則由可得:
,解得.
故點(diǎn)B到平面PCD的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了對(duì)應(yīng)因人口老齡化而造成的勞動(dòng)力短缺等問題,擬定出臺(tái)“延遲退休年齡政策”,為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65的人群中隨機(jī)調(diào)查50人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)“延遲退休年齡政策”的支持度有差異:
(2)若從年齡在,的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,記選中的4人中支持“延遲退休”人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),試求的單調(diào)區(qū)間;
(2)若在內(nèi)有極值,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)若,求的單調(diào)區(qū)間;
(2)若,求的極大值;
(3)若,指出的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地?cái)M建造一座體育館,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖所示:曲線是以點(diǎn)為圓心的圓的一部分,其中,是圓的切線,且,曲線是拋物線的一部分,,且恰好等于圓的半徑.
(1)若米,米,求與的值;
(2)若體育館側(cè)面的最大寬度不超過75米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李克強(qiáng)總理在2018年政府工作報(bào)告指出,要加快建設(shè)創(chuàng)新型國家,把握世界新一輪科技革命和產(chǎn)業(yè)變革大勢(shì),深入實(shí)施創(chuàng)新驅(qū)動(dòng)發(fā)展戰(zhàn)略,不斷增強(qiáng)經(jīng)濟(jì)創(chuàng)新力和競(jìng)爭(zhēng)力.某手機(jī)生產(chǎn)企業(yè)積極響應(yīng)政府號(hào)召,大力研發(fā)新產(chǎn)品,爭(zhēng)創(chuàng)世界名牌.為了對(duì)研發(fā)的一批最新款手機(jī)進(jìn)行合理定價(jià),將該款手機(jī)按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
單價(jià)(千元) | 3 | 4 | 5 | 6 | 7 | 8 |
銷量(百件) | 70 | 65 | 62 | 59 | 56 |
已知.
(1)若變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(百件)關(guān)于試銷單價(jià)(千元)的線性回歸方程;
(2)用(1)中所求的線性回歸方程得到與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從個(gè)銷售數(shù)據(jù)中任取個(gè),求“好數(shù)據(jù)”至少個(gè)的概率.
(參考公式:線性回歸方程中,的估計(jì)值分別為,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列的前n項(xiàng)和,滿足,則的最小值為
A. B. 3 C. 4 D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)的單調(diào)區(qū)間:
(Ⅱ)求函數(shù)的極值;
(Ⅲ)若函數(shù)有兩個(gè)不同的零點(diǎn),求a的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com