若f(x)滿(mǎn)足f(-x)=(-f(x),且在(-¥ ,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集是

[  ]

A.(-2,0)È (0,2)

B.(-¥ ,-2)È (0,2)

C.(-¥ ,-2)È (2,+¥ )

D.(-2,0)È (2,+¥ )

答案:A
解析:

f(2)=0,則f(2)=0,而f(x)(0,+¥ )上為增函數(shù),則當(dāng)x<-2時(shí),f(x)0;當(dāng)-2x0時(shí),f(x)0;當(dāng)0x2時(shí),f(x)0;當(dāng)x2時(shí),f(x)0

x·f(x)0的解集為(2,0)È (0,2)


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:已知函數(shù)f(x)與g(x),若存在一條直線(xiàn)y=kx+b,使得對(duì)公共定義域內(nèi)的任意實(shí)數(shù)均滿(mǎn)足g(x)≤f(x)≤kx+b恒成立,其中等號(hào)在公共點(diǎn)處成立,則稱(chēng)直線(xiàn)y=kx+b為曲線(xiàn)f(x)與g(x)的“左同旁切線(xiàn)”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線(xiàn)y=x-l是f(x)與g(x)的“左同旁切線(xiàn)”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請(qǐng)結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:四川省成都樹(shù)德中學(xué)2012屆高考適應(yīng)考試(一)數(shù)學(xué)試題文理科 題型:022

對(duì)于函數(shù)f(x),定義:若存在非零常數(shù)M,T,使函數(shù)f(x)對(duì)定義域內(nèi)的任意x,都滿(mǎn)足f(x+T)-f(x)=M,則稱(chēng)函數(shù)y=f(x)是準(zhǔn)周期函數(shù),非零常數(shù)T稱(chēng)為函數(shù)y=f(x)的一個(gè)準(zhǔn)周期.如函數(shù)f(x)=2x+sinx是以T=2π為一個(gè)準(zhǔn)周期且M=4π的準(zhǔn)周期函數(shù).下列命題:

①2π是函數(shù)f(x)=sinx的一個(gè)準(zhǔn)周期;

②f(x)=x+(-1)x(x∈z)是以T=2為一個(gè)準(zhǔn)周期且M=2的準(zhǔn)周期函數(shù);

③函數(shù)f(x)=kx+b+Asin(wx+φ)(k≠0,w>0)是準(zhǔn)周期函數(shù);

④如果f(x)是一個(gè)一次函數(shù)與一個(gè)周期函數(shù)的和的形式,則f(x)一定是準(zhǔn)周期函數(shù);

⑤如果f(x+1)=-f(x)則函數(shù)h(x)=x+f(x)是以T=2為一個(gè)準(zhǔn)周期且M=4的準(zhǔn)周期函數(shù);其中的真命題是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆湖南省衡陽(yáng)市八中高三上學(xué)期第一次月考文科數(shù)學(xué) 題型:解答題

(13分)定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足f(3)=log23且對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求證f(x)為奇函數(shù);
(2)若f(k·3)+f(3-9-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年人教B版高中數(shù)學(xué)必修一3.3冪函數(shù)練習(xí)卷(解析版) 題型:解答題

定義在R上的單調(diào)函數(shù)f(x)滿(mǎn)足f(3)=log3且對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y).

(1)求證f(x)為奇函數(shù);

(2)若f(k·3)+f(3-9-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:0103 期中題 題型:填空題

下列說(shuō)法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿(mǎn)足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
其中所有正確說(shuō)法的序號(hào)是(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案