在空間給出下面四個(gè)命題(其中m、n為不同的兩條直線,α、β為不同的兩個(gè)平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正確的命題個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:根據(jù)線面垂直、線面平行的性質(zhì),可判斷①;由m∥n,n∥α⇒m∥α或m?α可判斷②;
③根據(jù)兩平行線中的一個(gè)垂直于平面,則另一個(gè)也垂直于平面及面面垂直的判定定理可判斷③
④由已知可得平面α,β都與直線m,n確定的平面平行,則可得α∥β,可判斷④
解答:解:①由線面垂直及線面平行的性質(zhì),可知m⊥α,n⊥α得m∥n,故①正確;
②m∥n,n∥α⇒m∥α或m?α,故②錯(cuò)誤
③根據(jù)線面垂直的性質(zhì);兩平行線中的一個(gè)垂直于平面,則另一個(gè)也垂直于平面可知:若m∥n,n⊥β,則m⊥β,又m∥α⇒α⊥β,故③正確
④由m∩n=A,m∥α,n∥α,,m∥β,n∥β可得平面α,β都與直線m,n確定的平面平行,則可得α∥β,故④正確
綜上知,正確的有①③④
故選C
點(diǎn)評(píng):本題的考點(diǎn)是間中直線一直線之間的位置關(guān)系,考查了線線平行與線線垂直的條件,解題的關(guān)鍵是理解題意,有著較強(qiáng)的空間想像能力,推理判斷的能力,是高考中常見(jiàn)題型,其特點(diǎn)是涉及到的知識(shí)點(diǎn)多,知識(shí)容量大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲模擬)在空間給出下面四個(gè)命題(其中m、n為不同的兩條直線,α、β為不同的兩個(gè)平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正確的命題個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三下學(xué)期第五次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

在空間給出下面四個(gè)命題(其中、為不同的兩條直線),、為不同的兩個(gè)平面)

  ①

其中正確的命題個(gè)數(shù)有

  A.1個(gè)             B.2個(gè)               C.3個(gè)              D.4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三第五次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

在空間給出下面四個(gè)命題(其中、為不同的兩條直線),為不同的兩個(gè)平面)

  ①

其中正確的命題個(gè)數(shù)有

  A.1個(gè)             B.2個(gè)               C.3個(gè)              D.4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年海南省瓊海市高三第一學(xué)期期末理科數(shù)學(xué)試卷 題型:選擇題

在空間給出下面四個(gè)命題(其中、為不同的兩條直線,為不同的兩個(gè)平面)

,//

//////

//,,//

,////,//////

其中正確的命題個(gè)數(shù)有(    )

A、1個(gè)           B、2個(gè)            C、3個(gè)            D、4個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年海南省瓊海市嘉積中學(xué)高三(上)質(zhì)量檢測(cè)數(shù)學(xué)試卷3(理科)(解析版) 題型:選擇題

在空間給出下面四個(gè)命題(其中m、n為不同的兩條直線,α、β為不同的兩個(gè)平面)
①m⊥α,n∥α⇒m⊥n
②m∥n,n∥α⇒m∥α
③m∥n,n⊥β,m∥α⇒α⊥β
④m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β
其中正確的命題個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案