一摩托車手欲飛躍黃河,設計摩托車沿跑道飛出時前進方向與水平方向的仰角是12°,飛躍的水平距離是35 m,為了安全,摩托車在最高點與落地點的垂直落差約10 m,那么,騎手沿跑道飛出時的速度應為多少?(單位是 km/h,精確到個位)

(參考數(shù)據(jù):sin12°=0.207 9,cos12°=0.978 1,tan12°=0.212 5)

剖析:本題的背景是物理中的運動學規(guī)律,摩托車離開跑道后的運動軌跡為拋物線,它是由水平方向的勻速直線運動與豎直方向上的上拋運動合成的,它們運行的位移都是時間t的函數(shù),故應引入時間t,通過速度v的矢量分解來尋找解決問題的途徑.

解: 摩托車飛離跑道后,不考慮空氣阻力,其運動軌跡是拋物線,軌跡方程是

   

    其中v是摩托車飛離跑道時的速度,t是飛行時間,x是水平飛行距離,y是相對于起始點的垂直高度,將軌跡方程改寫為

    y=-×9.8x2+tan12°·x,

    即y=-5.121 9+0.212 5x.

    當x≈0.020 7v2時,

    取得ymax≈0.002 2v2.

    當x=35時,y=-6 274.327 5+7.437 5.

   ∵ymax-y=10,

    0.002 2v2+6 274.327 5-17.437 5=0,

    解得v≈19.44 m/s或v≈86.88 m/s.

    若v≈86.88 m/s,則x=156.246 m,與題目不符,

    而v≈19.44 m/s,符合題意,為所求解.

    故v≈19.44 m/s=69.984 km/h≈70 km/h.

    答:騎手沿跑道飛出時的速度應為70 km/h.

講評:本題直接構造y是x的函數(shù)解析式很困難,應引入適當?shù)膮?shù)(時間t)作媒介,再研究x與y是怎樣隨參數(shù)變化而變化的,問題往往就容易解決了.這種輔助變量的引入要具體問題具體分析,以解題的簡捷為原則.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一摩托車手欲飛躍黃河,設計摩托車沿跑道飛出時前進方向與水平方向的仰角是12°,飛躍的水平距離是35 m,為了安全,摩托車在最高點與落地點的垂直落差約10 m,那么,騎手沿跑道飛出時的速度應為多少?(單位是km/h,精確到個位)
(參考數(shù)據(jù):sin12°=0.2079,cos12°=0.9781,tan12°=0.2125)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一摩托車手欲飛躍黃河,設計摩托車沿跑道飛出時前進方向與水平方向的仰角是12°,飛躍的水平距離是35 m,為了安全,摩托車在最高點與落地點的垂直落差約10 m,那么,騎手沿跑道飛出時的速度應為多少?(單位是km/h,精確到個位)
(參考數(shù)據(jù):sin12°=0.2079,cos12°=0.9781,tan12°=0.2125)

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:8.6 圓錐曲線的應用(解析版) 題型:解答題

一摩托車手欲飛躍黃河,設計摩托車沿跑道飛出時前進方向與水平方向的仰角是12°,飛躍的水平距離是35 m,為了安全,摩托車在最高點與落地點的垂直落差約10 m,那么,騎手沿跑道飛出時的速度應為多少?(單位是km/h,精確到個位)
(參考數(shù)據(jù):sin12°=0.2079,cos12°=0.9781,tan12°=0.2125)

查看答案和解析>>

同步練習冊答案