【題目】如圖,在三棱錐中, ⊥平面, , 分別為的中點(diǎn).(19)

(I)求到平面的距離;

(II)在線(xiàn)段上是否存在一點(diǎn),使得平面平面,若存在,試確定的位置,并證明此點(diǎn)滿(mǎn)足要求;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) ;(2)見(jiàn)解析.

【解析】試題分析:(1)證明OC⊥OB,利用等體積法,求出O到平面ABC的距離;

(2)取CB的中點(diǎn)F,連接DF,EF,則DF∥AC,DE∥AO,從而可得平面DEF∥平面AOC.

(I)因?yàn)?/span>平面 ,所以,

為直角三角形.

又因?yàn)?/span>,

所以.

,可知為直角三角形.

所以,所以,

設(shè)到平面的距離為

由于,得,解得

(II)在線(xiàn)段上存在一點(diǎn),使得平面平面,此時(shí)為線(xiàn)段的中點(diǎn).

證明過(guò)程:如圖,連接,因?yàn)?/span>分別為的中點(diǎn),所以.

平面上,所以平面.

因?yàn)?/span>分別為的中點(diǎn),所以.

平面,所以平面,

平面 平面,

所以平面∥平面.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?

(2)若從所有“高個(gè)子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫(xiě)出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時(shí),(1)k + ﹣3 垂直;
當(dāng)k=時(shí),(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識(shí),鄭州市面向全市征召義務(wù)宣傳志愿者. 從符合條件的500名志愿者中隨機(jī)抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場(chǎng)的宣傳活動(dòng),再?gòu)倪@10名志愿者中選取3名擔(dān)任主要負(fù)責(zé)人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= (其中p2+q2≠0),且存在公差不為0的無(wú)窮等差數(shù)列{an},使得函數(shù)在其定義域內(nèi)還可以表示為f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1 , a2的值(用p,q表示);
(2)求{an}的通項(xiàng)公式;
(3)當(dāng)n∈N*且n≥2時(shí),比較(an1an與(an 的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱中,四邊形為梯形, ,且.過(guò)三點(diǎn)的平面記為 的交點(diǎn)為.

(I)證明: 的中點(diǎn);

(II)求此四棱柱被平面所分成上下兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論正確的是(
A.各個(gè)面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個(gè)棱錐和一個(gè)棱臺(tái)
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(1, )是函數(shù)f(x)= ax(a>0,a≠1)圖象上一點(diǎn),等比數(shù)列{an}的前n項(xiàng)和為c﹣f(n).?dāng)?shù)列{bn}(bn>0)的首項(xiàng)為2c,前n項(xiàng)和滿(mǎn)足 = +1(n≥2). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{ }的前n項(xiàng)和為T(mén)n , 問(wèn)使Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)為了對(duì)新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷(xiāo),得到一組檢測(cè)數(shù)據(jù),如下表所示:

已知變量具有線(xiàn)性負(fù)相關(guān)關(guān)系,且, ,現(xiàn)有甲、乙、丙三位同學(xué)通過(guò)計(jì)算求得其回歸直線(xiàn)方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.

(1)試判斷誰(shuí)的計(jì)算結(jié)果正確?并求出的值;

2)若由線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與檢測(cè)數(shù)據(jù)的誤差不超過(guò)1,則該檢測(cè)數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測(cè)數(shù)據(jù)中隨機(jī)抽取2個(gè),求這兩個(gè)檢測(cè)數(shù)據(jù)均為“理想數(shù)據(jù)”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案