求中心在坐標原點,對稱軸為坐標軸且經(jīng)過點,一條漸近線的傾斜角為的雙曲線方程。

解析試題分析:由題意可得雙曲線的漸近線方程為:,且雙曲線過點,
所以,設雙曲線方程為:
由已知條件可得,

解之得 :
所以,所求雙曲線方程為:
考點:雙曲線方程及性質
點評:本題中先由漸近線與點的坐標確定焦點位置,當焦點在x軸時,漸近線為,當焦點在y軸時,漸近線為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知,直線, 動點的距離是它到定直線距離的倍. 設動點的軌跡曲線為
(1)求曲線的軌跡方程.
(2)設點, 若直線為曲線的任意一條切線,且點、的距離分別為,試判斷是否為常數(shù),請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設直線是曲線的一條切線,
(Ⅰ)求切點坐標及的值;
(Ⅱ)當時,存在,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知中心在原點的橢圓C:的一個焦點為,為橢圓C上一點,的面積為
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線,使得直線與橢圓C相交于A,B兩點,且以線段AB為直徑的圓恰好經(jīng)過原點?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合,拋物線的頂點在坐標原點,過點的直線與拋物線交于A,B兩點,
(1)寫出拋物線的標準方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓和圓,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.

(1)(。┤魣AO過橢圓的兩個焦點,求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點P,使得,求橢圓離心率e的取值范圍;
(2)設直線AB與x軸、y軸分別交于點M,N,問當點P在橢圓上運動時,是否為定值?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:











(Ⅰ)求曲線的標準方程;
(Ⅱ)設直線過拋物線的焦點,與橢圓交于不同的兩點、,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記試求當取得最小值時的最大值.

查看答案和解析>>

同步練習冊答案