如圖,已知二面角αPQβ的大小為60°,點C為棱PQ上一點,Aβ,AC=2,∠ACP=30°,則點A到平面α的距離為(      )

A.1                B.               C.             D.

 

【答案】

C

【解析】

試題分析:過A作AO⊥α于O,點A到平面α的距離為AO;作AD⊥PQ于D,連接OD,則AD⊥CD,AO⊥OD,∠ADO就是二面角α-PQ-β的大小為60°.∵AC=2,∠ACP=30°,所以AD=ACsin30°=2×=1,在Rt△AOD中,。

考點:點、線、面間的距離計算。

點評:本題考查空間幾何體中點、線、面的關(guān)系,正確作出所求距離是解題的關(guān)鍵,考查計算能力與空間想象能力。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知二面角α-AB-β的大小為120°,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.
(1)求異面直線AB與CD所成角的大�。�
(2)求點P到直線AB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•成都三模)如圖,已知二面角α-PQ-β的大小為60°,點C為棱PQ一點,A∈β,AC=2,∠ACP=30°,則點A到平面α的距離為( �。�

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知二面角α-l-β的平面角為45°,在半平面α內(nèi)有一個半圓O,其直徑AB在l上,M是這個半圓O上任一點(除A、B外),直線AM、BM與另一個半平面β所成的角分別為θ1、θ2.試證明cos2θ1+cos2θ2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆四川省攀枝花市高二上學期期中理科數(shù)學試卷(解析版) 題型:選擇題

如圖,已知二面角α-PQ-β的大小為60°,點C為棱PQ上一點,A∈β,AC=2,∠ACP=30°,則點A到平面α的距離為(       )

 A.1   B.    C.   D.

 

查看答案和解析>>

同步練習冊答案
闂傚倸鍊烽懗鑸电仚婵°倗濮寸换姗€鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾诲┑鐘叉搐缁狀垶鏌ㄩ悤鍌涘