【題目】悅跑圈是一款基于社交型的跑步應(yīng)用,用戶通過該平臺可查看自己某時間段的運動情況,某人根據(jù)月至月期間每月跑步的里程(單位:十公里)的數(shù)據(jù)繪制了下面的折線圖,根據(jù)該折線圖,下 列結(jié)論正確的是(

A.月跑步里程逐月增加

B.月跑步里程最大值出現(xiàn)在

C.月跑步里程的中位數(shù)為月份對應(yīng)的里程數(shù)

D.月至月的月跑步里程相對于月至月波動性更小,變化比較平穩(wěn)

【答案】BCD

【解析】

根據(jù)折線圖,判斷A,B,D選項的正確性,判斷出中位數(shù)所在的月份,由此判斷C選項的正確性.

根據(jù)折線圖可知,月跑步里程下降了,故A選項錯誤.

根據(jù)折線圖可知,月的跑步里程最大,故B選項正確.

一共個月份,里程中間的是從小到大的第個,根據(jù)折線圖可知,跑步里程的中位數(shù)為月份對應(yīng)的里程數(shù),故C選項正確.

根據(jù)折線圖可知,月至月的月跑步里程相對于月至月波動性更小,變化比較平穩(wěn),故D選項正確.

綜上所述,正確的選項為BCD.

故選:BCD

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在長方體中,E,F,P,Q分別為棱的中點,則下列結(jié)論正確的是(

A.B.平面EFPQ

C.平面EFPQD.直線所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季取暖時減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費用為每毫米厚6萬元,且每年的能源消耗費用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費用與年的能源消耗費用之和.

(1)請解釋的實際意義,并求的表達式;

(2)當隔熱層噴涂厚度為多少毫米時,業(yè)主所付的總費用最少?并求此時與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電子商務(wù)平臺的管理員隨機抽取了1000位上網(wǎng)購物者,并對其年齡(在10歲到69歲之間)進行了調(diào)查,統(tǒng)計情況如下表所示.

年齡

人數(shù)

100

150

200

50

已知,三個年齡段的上網(wǎng)購物的人數(shù)依次構(gòu)成遞減的等比數(shù)列.

(1)求的值;

(2)若將年齡在內(nèi)的上網(wǎng)購物者定義為“消費主力軍”,其他年齡段內(nèi)的上網(wǎng)購物者定義為“消費潛力軍”.現(xiàn)采用分層抽樣的方式從參與調(diào)查的1000位上網(wǎng)購物者中抽取5人,再從這5人中抽取2人,求這2人中至少有一人是消費潛力軍的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,又點在該橢圓上.

1)求橢圓的方程;

2)若斜率為的直線與橢圓交于不同的兩點,,求的最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)拋物線的焦點為,過點作直線與拋物線交于,兩點,點滿足,過軸的垂線與拋物線交于點,若,則點的橫坐標為__________,__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某地區(qū)年齡在25~55歲的人員中,隨機抽出100人,了解他們對今年兩會的熱點問題的看法,繪制出頻率分布直方圖如圖所示,則下列說法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20

B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30

C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40

D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C:()的短軸長為2,離心率為

(1)求橢圓C的方程

(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點GH,設(shè)P為橢圓C上一點,且滿足(O為坐標原點),當時,求實數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左、右焦點分別為,離心率為,過焦點且垂直于x軸的直線被橢圓C截得的線段長為1

求橢圓C的方程;

為橢圓C上一動點,連接,,設(shè)的角平分線PM交橢圓C的長軸于點,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案