已知各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且a2n+an=2Sn
(1)求a1
(2)求數(shù)列{an}的通項;
(3)若bn=
1
an2
(n∈N*),Tn=b1+b2+…bn,求證:Tn
5
3
考點:數(shù)列的求和
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)a2n+an=2Sn中令n=1求a1
(2)又a2n+an=2Sn有a2n+1+an+1=2Sn+1,兩式相減得并整理得(an+1+an)(an+1-an-1)=0,數(shù)列{an}是以a1=1,公差為1的等差數(shù)列,以此求數(shù)列{an}的通項;
(3)由(2)得出an=n,利用放縮法求證:Tn
5
3
解答: 解:(1)令n=1,得a12+a1=2S1=2a1,∵a1>0,∴a1=1,
(2)又a2n+an=2Sn,
有a2n+1+an+1=2Sn+1
兩式相減得并整理得(an+1+an)(an+1-an-1)=0,
∵an>0,∴an+1-an=1,∴數(shù)列{an}是以a1=1,公差為1的等差數(shù)列,
通項公式為an=1+(n-1)×1=n;
(3)n=1時b1=1<
5
3
符合…(9分)
n≥2時,因為
1
n2
1
n2-
1
4
=
4
4n2-1
=2(
1
2n-1
-
1
2n+1

所以Tn=b1+b2+…bn<1+2(
1
3
-
1
5
+
1
5
-
1
7
+…+
1
2n-1
-
1
2n+1
)=1+
2
3
=
5
3

∴Tn
5
3
點評:本題考查等差數(shù)列的判定與通項公式求解,不等式的證明,是數(shù)列與不等式的結合.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[x2+(2a-2)x+2-2a-b]ex(a,b∈R)在區(qū)間[-1,3]上是減函數(shù),則a+b的最小值是( 。
A、4
B、2
C、
3
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)列{an}中,對于任意n∈N*,等式:a1+2a2+22a3+…+2n-1an=(n•2n-2n+1)t恒成立,其中常數(shù)t≠0.
(1)求a1,a2的值;          
(2)求證:數(shù)列{2an}為等比數(shù)列;
(3)如果關于n的不等式
m
a1
+
1
a2
+
1
a4
+
1
a8
+…+
1
a2n
>0的解集為{n|n≥3,n∈N*},試求實數(shù)t、m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知極坐標的極點與平面直角坐標系的原點重合,極軸與x軸的正半軸重合,且長度單位相同,圓C的參數(shù)方程為
x=1+2cosα
y=
3
+2sinα
(α為參數(shù)),點Q的極坐標為(4,-
3
).
(Ⅰ)寫出圓C的直角坐標方程和極坐標方程;
(Ⅱ)已知點P是圓C上的任意一點,求P,Q兩點間距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x的焦點為F.
(1)若點F是線段AP中點,當點A在拋物線C上運動時,求動點P的軌跡方程;
(2)在x軸上是否存在點Q,使得點Q關于直線y=2x的對稱點在拋物線C上?如果存在,求所有滿足條件的點Q的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是矩形,側棱PD⊥底面ABCD,PD=CD,AB=4,BC=3,E是PD的中點.
(1)證明:PB∥平面ACE
(2)若Q為直線PB上任意一點,求幾何體Q-ACE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:x2-x-2>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,點M是BC的中點,設
AB
=
a
,
AC
=
b
,點N在AC上,且AN=2NC,AM與BN相交于點P,AP=λAM,求
(1)λ的值;
(2)用
a
,
b
表示
AP

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,滿足:Sn=
3
2
(an-1),數(shù)列{bn}的前n項和為Tn,滿足:Tn=2n2+5n.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)若把數(shù)列{an},{bn}的公共項從小到大的順序排成一數(shù)列{tn}(不需證明),求使得不等式3log3tn>Tn成立的值.

查看答案和解析>>

同步練習冊答案