已知以點(diǎn)C (t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線(xiàn)2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P、Q分別是直線(xiàn)l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).
(1)見(jiàn)解析(2)(x-2)2+(y-1)2=5(3)2,坐標(biāo)為
【解析】(1)證明 由題設(shè)知,圓C的方程為(x-t)2+2=t2+,
化簡(jiǎn)得x2-2tx+y2-y=0,
當(dāng)y=0時(shí),x=0或2t,則A(2t,0);
當(dāng)x=0時(shí),y=0或,則B ,
∴S△AOB=|OA|·|OB|=|2t|·=4為定值.
(2)解 ∵|OM|=|ON|,則原點(diǎn)O在MN的中垂線(xiàn)上,設(shè)MN的中點(diǎn)為H,則CH⊥MN,
∴C、H、O三點(diǎn)共線(xiàn),則直線(xiàn)OC的斜率
k===,∴t=2或t=-2.
∴圓心為C(2,1)或C(-2,-1),
∴圓C的方程為(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5由于當(dāng)圓方程為(x+2)2+(y+1)2=5時(shí),直線(xiàn)2x+y-4=0到圓心的距離d>r,此時(shí)不滿(mǎn)足直線(xiàn)與圓相交,故舍去,
∴圓C的方程為(x-2)2+(y-1)2=5.
(3)解 點(diǎn)B(0,2)關(guān)于直線(xiàn)x+y+2=0的對(duì)稱(chēng)點(diǎn)B′(-4,-2),則|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,
又B′到圓上點(diǎn)Q的最短距離為
|B′C|-r==3-=2.
所以|PB|+|PQ|的最小值為2,直線(xiàn)B′C的方程為y=x,則直線(xiàn)B′C與直線(xiàn)x+y+2=0的交點(diǎn)P的坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練5練習(xí)卷(解析版) 題型:填空題
關(guān)于x的方程x3-3x2-a=0有三個(gè)不同的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專(zhuān)題提升訓(xùn)練1練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)y=g(x)的圖象上任意一點(diǎn)P關(guān)于原點(diǎn)對(duì)稱(chēng)的點(diǎn)Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫(xiě)出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時(shí)總有f(x)+g(x)≥m成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)7-2隨機(jī)變量及其分布練習(xí)卷(解析版) 題型:選擇題
若隨機(jī)變量X的概率分布密度函數(shù)是φμ,σ(x)= (x∈R),則E(2X-1)=( ).
A.-1 B.-2
C.-4 D.-5
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線(xiàn)、拋物線(xiàn)練習(xí)卷(解析版) 題型:選擇題
已知直線(xiàn)l交橢圓4x2+5y2=80于M,N兩點(diǎn),橢圓與y軸的正半軸交于B點(diǎn),若△BMN的重心恰好落在橢圓的右焦點(diǎn)上,則直線(xiàn)l的方程是( ).
A.6x-5y-28=0 B.6x+5y-28=0
C.5x+6y-28=0 D.5x-6y-28=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-1直線(xiàn)與圓練習(xí)卷(解析版) 題型:填空題
已知直線(xiàn)ax+by=1(a,b是實(shí)數(shù))與圓O:x2+y2=1(O是坐標(biāo)原點(diǎn))相交于A,B兩點(diǎn),且△AOB是直角三角形,點(diǎn)P(a,b)是以點(diǎn)M(0,1)為圓心的圓M上的任意一點(diǎn),則圓M的面積的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)5-2空間向量與立體幾何練習(xí)卷(解析版) 題型:填空題
正四棱錐S-ABCD中,O為頂點(diǎn)在底面上的射影,P為側(cè)棱SD的中點(diǎn),且SO=OD,則直線(xiàn)BC與平面PAC所成的角是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:解答題
已知Sn是數(shù)列{an}的前n項(xiàng)和,且an=Sn-1+2(n≥2),a1=2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整數(shù)k,使得
對(duì)于任意的正整數(shù)n,有Tn>恒成立?若存在,求出k的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:解答題
甲方是一農(nóng)場(chǎng),乙方是一工廠.由于乙方生產(chǎn)需占用甲方的資源,因此甲方有權(quán)向乙方索賠以彌補(bǔ)經(jīng)濟(jì)損失并獲得一定凈收入,在乙方不賠付甲方的情況下,乙方的年利潤(rùn)x(元)與年產(chǎn)量t(噸)滿(mǎn)足函數(shù)關(guān)系x=2 000.若乙方每生產(chǎn)一噸產(chǎn)品必須賠付甲方S元(以下稱(chēng)S為賠付價(jià)格).
(1)將乙方的年利潤(rùn)w(元)表示為年產(chǎn)量t(噸)的函數(shù),并求出乙方獲得最大利潤(rùn)的年產(chǎn)量;
(2)甲方每年受乙方生產(chǎn)影響的經(jīng)濟(jì)損失金額y=0.002t2(元),在乙方按照獲得最大利潤(rùn)的產(chǎn)量進(jìn)行生產(chǎn)的前提下,甲方要在索賠中獲得最大凈收入,應(yīng)向乙方要求的賠付價(jià)格S是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com