“拋階磚”是國外游樂場(chǎng)的典型游戲之一.參與者只須將手上的“金幣”(設(shè)“金幣”的半徑為1)拋向離身邊若干距離的階磚平面上,拋出的“金幣”若恰好落在任何一個(gè)階磚(邊長為2.1的正方形)的范圍內(nèi)(不與階磚相連的線重疊),便可獲大獎(jiǎng).不少人被高額獎(jiǎng)金所吸引,紛紛參與此游戲但很少有人得到獎(jiǎng)品,請(qǐng)用所學(xué)的概率知識(shí)解釋這是為什么.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于的一次函數(shù)
(1)設(shè)集合,分別從集合中隨機(jī)取一個(gè)數(shù)作為,求函數(shù)是增函數(shù)的概率;
(2)若實(shí)數(shù)滿足條件,求函數(shù)的圖象不經(jīng)過第四象限的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

A、B兩個(gè)投資項(xiàng)目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析,X1和X2的分布列分別為

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個(gè)項(xiàng)目上各投資100萬元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項(xiàng)目,100-x萬元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤的方差與投資B項(xiàng)目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校組織一次冬令營活動(dòng),有8名同學(xué)參加,其中有5名男同學(xué),3名女同學(xué),為了活動(dòng)的需要,要從這8名同學(xué)中隨機(jī)抽取3名同學(xué)去執(zhí)行一項(xiàng)特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某籃球運(yùn)動(dòng)員在最近幾場(chǎng)大賽中罰球投籃的結(jié)果如下:

投籃次數(shù)n
8
10
12
9
10
16
進(jìn)球次數(shù)m
6
8
9
7
7
12
進(jìn)球頻率m/n
 
 
 
 
 
 
(1)計(jì)算表中進(jìn)球的頻率;
(2)這位運(yùn)動(dòng)員投籃一次,進(jìn)球的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三個(gè)車床加工的零件分別為350個(gè),700個(gè),1050個(gè),現(xiàn)用分層抽樣的方法隨機(jī)抽取6個(gè)零件進(jìn)行檢驗(yàn).
(1)從抽取的6個(gè)零件中任意取出2個(gè),已知這兩個(gè)零件都不是甲車床加工的,求其中至少有一個(gè)是乙車床加工的零件;
(2)從抽取的6個(gè)零件中任意取出3個(gè),記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中裝有大小相同的黑球和白球共個(gè),從中任取個(gè)都是白球的概率為.現(xiàn)甲、乙兩人從袋中輪流摸球,甲先取,乙后取,然后甲再取 ,每次摸取個(gè)球,取出的球不放回,直到其中有一人取到白球時(shí)終止.用表示取球終止時(shí)取球的總次數(shù).
(1)求袋中原有白球的個(gè)數(shù);
(2)求隨機(jī)變量的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三人參加某次招聘會(huì),假設(shè)甲能被聘用的概率是,甲、丙兩人同時(shí)不能被聘用的概率是,乙、丙兩人同時(shí)能被聘用的概率為,且三人各自能否被聘用相互獨(dú)立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對(duì)值,求的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

同步練習(xí)冊(cè)答案