不等式
2-x
x+1
≥0的解集為
 
考點:其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:要求的不等式等價于
x-2
x+1
≤0,即
x+1≠0
(x-2)(x+1)≤0
,由此求得不等式的解集.
解答: 解:不等式
2-x
x+1
≥0等價于
x-2
x+1
≤0,即
x+1≠0
(x-2)(x+1)≤0
,
求得-1<x≤2,可得不等式的解集為(-1,2],
故答案為:(-1,2].
點評:本題主要考查分式不等式的解法,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知某幾何體的直觀圖和三視圖如圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角表,俯視圖為直角梯形.
(Ⅰ)求證:BN⊥平面C1B1N;
(Ⅱ)求直線C1N與平面CNB1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間[-1,4]上為減函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

e1
e2
是夾角為60°的兩個向量,且|
e1
|=2,|
e2
|=1,
a
=2
e1
+
e2
;
b
=-3
e1
e2

(1)λ=2,求向量
a
,
b
夾角.
(2)若
a
b
,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,2),
b
=(1,-1),則2
a
+
b
a
-
b
的夾角等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:(1+tan1°)(1+tan2°)…(1+tan44°)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,a1=-2013,其前n項和為Sn,若
S12
12
-
S10
10
=2,則S2014的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱柱ABC-A1B1C1的6個頂點都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,則球O的體積為
 

查看答案和解析>>

同步練習冊答案