在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系取相同單位長度.已知曲線過點(diǎn)的直線的參數(shù)方程為(t為參數(shù)). (1)求曲線C與直線 的普通方程;(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,若直線 與曲線相切,求實(shí)數(shù)的值.
(1)  , (2)

試題分析:(1)由 ,由參數(shù)方程為消去參數(shù)得:,(2)由 ,代入,與直線聯(lián)立得消去,得,由△知,,直線與橢圓相切問題,利用判別式為零解決.
試題解析:(1)曲線,直線.   .    (5分)
(2)曲線,與直線聯(lián)立得,消去,得
,由△知,,.    . (10分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的參數(shù)方程是為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;
(2)已知點(diǎn)、的極坐標(biāo)分別是,直線與曲線相交于、兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù),0≤α<π)。以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為
ρcos2θ=4sinθ。
(1)求直線l與曲線C的平面直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于不同的兩點(diǎn)A、B,若,求α的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸與軸的非負(fù)半軸重合.若直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù),且,則直線與曲線的交點(diǎn)的直角坐標(biāo)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C的極坐標(biāo)方程為ρ=6sinθ,以極點(diǎn)為原點(diǎn)、極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點(diǎn),作射線AC,在AC上存在點(diǎn)P,使得AP·AC=1,以A為極點(diǎn),射線AB為極軸建立極坐標(biāo)系.

(1)求以AB為直徑的圓的極坐標(biāo)方程;
(2)求動(dòng)點(diǎn)P的軌跡的極坐標(biāo)方程;
(3)求點(diǎn)P的軌跡在圓內(nèi)部分的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在極坐標(biāo)系中,圓:上到直線距離為1的點(diǎn)的個(gè)數(shù)為(   )
A.1 B.2C.3 D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在極坐標(biāo)系中,圓的圓心到直線 的距離是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C的極坐標(biāo)方程為,則圓心C的一個(gè)極坐標(biāo)為             .

查看答案和解析>>

同步練習(xí)冊答案