如圖,已知四邊形為梯形,, ,四邊形為矩形,且平面平面,,點(diǎn)為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐的體積.
(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ).
【解析】
試題分析:(Ⅰ)取中點(diǎn),可以證明四邊形為平行四邊形,即,∴∥平面;
(Ⅱ)證明平面即可;(Ⅲ)改變四面體(三棱錐)的頂點(diǎn),取C即可;或者利用比例.
試題解析:(Ⅰ)取中點(diǎn),連.
∵為對(duì)角線的中點(diǎn),∴,且,
∴四邊形為平行四邊形,即;或者可以采用比例的方法求解.
又∵平面,平面,∴∥平面. 4分
(Ⅱ)∵四邊形為矩形,且平面平面,∴平面,∴;
∵四邊形為梯形,,且,∴.
又在中,,且,∴,,∴.
于是在中,由,,及余弦定理,得.
∴,∴.∴平面,
又∵平面,∴平面平面. 9分
(Ⅲ)作,垂足為,由平面平面得平面.
易求得,所以三棱錐的體積為
. 13分.
【法二】連接,則、、三點(diǎn)共線,故
考點(diǎn):線面位置關(guān)系的證明、多面體體積的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、3 | ||
B、3
| ||
C、6
| ||
D、6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-10學(xué)年黑龍江佳一中高一第三學(xué)段考試數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,已知, 四邊形是梯形,∥, ,, 中點(diǎn)。
(1)求證:∥ 平面;
(2)求異面直線與所成角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知四邊形為梯形,, ,四邊形為矩形,且平面平面,,點(diǎn)為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com