下列結(jié)論正確的是( 。
A、若向量
a
b
,則存在唯一的實(shí)數(shù)λ使得
a
=2λ
b
B、已知向量
a
,
b
為非零向量,則“
a
,
b
的夾角為鈍角”的充要條件是“
a
,
b
<0”
C、命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1
D、若命題P:?x∈R,x2-x+1<0,則¬P:?x∈R,x2-x+1>0
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:A.若
b
=
0
,則不存在實(shí)數(shù)λ使得
a
=2λ
b
;
B.若
a
b
<0,則
a
b
反向共線,此時(shí)夾角為平角;
C.利用逆否命題的定義即可判斷出;
D.利用命題的否定即可判斷出.
解答: 解:A.若向量
a
b
,
b
=
0
,則不存在實(shí)數(shù)λ使得
a
=2λ
b
,不正確;
B.若
a
,
b
<0,則
a
b
反向共線,此時(shí)夾角為平角,不正確;
C.命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1,正確;
D.命題P:?x∈R,x2-x+1<0,則¬P:?x∈R,x2-x+1≥0,不正確.
故選:C.
點(diǎn)評:本題考查了向量共線定理及其夾角公式、逆否命題的定義、命題的否定,考查了推理能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種相互獨(dú)立的預(yù)防措施可以降低某地區(qū)某災(zāi)情的發(fā)生.單獨(dú)采用甲、乙預(yù)防措施后,災(zāi)情發(fā)生的概率分別為0.08和0.10,且各需要費(fèi)用60萬元和50萬元.在不采取任何預(yù)防措施的情況下發(fā)生災(zāi)情的概率為0.3.如果災(zāi)情發(fā)生,將會造成800萬元的損失.(設(shè)總費(fèi)用=采取預(yù)防措施的費(fèi)用+可能發(fā)生災(zāi)情損失費(fèi)用)
( I)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用,他們各自總費(fèi)用是多少?
( II)若預(yù)防方案允許甲、乙兩種預(yù)防措施單獨(dú)采用、聯(lián)合采用或不采用,請確定預(yù)防方案使總費(fèi)用最少的那個(gè)方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①如果兩條不重合的直線斜率相等,則它們平行;
②如果兩直線平行,則它們的斜率相等;
③如果兩直線的斜率之積為-1,則它們垂直;
④如果兩直線垂直,則它們的斜率之積為-1.
其中正確的為( 。
A、①②③④B、①③
C、②④D、以上全錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題是真命題的是( 。
A、a,b是兩條直線,α是一個(gè)平面,b?α,若a∥b,則a∥α
B、若l∥α,則l平行與α內(nèi)的所有直線
C、m?α,l?β且l⊥m,則α⊥β
D、若l?β,l⊥α,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

西安市某省級示范高中為了了解學(xué)校食堂的服務(wù)質(zhì)量情況,對在校就餐的1400名學(xué)生按5%比例進(jìn)行問卷調(diào)查,把學(xué)生對食堂的“服務(wù)滿意度”與“價(jià)格滿意度”都分為五個(gè)等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計(jì)結(jié)果如下表所示(服務(wù)滿意度為x,價(jià)格滿意度為y).
價(jià)格滿意度
12345

務(wù)
滿

111220
221341
337884
414641
501231
(Ⅰ)作出“價(jià)格滿意度”的頻率分布直方圖;
(Ⅱ)為改進(jìn)食堂服務(wù)質(zhì)量,現(xiàn)從滿足“x≤5且y<3”的人中隨機(jī)選取2人參加座談會,記其中滿足“x<3且y=1”的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把3個(gè)大小完全相同且分別標(biāo)有1、1、2編號的小球,隨機(jī)放到4個(gè)編號為A、B、C、D的盒子中.
(Ⅰ)求2號小球恰好放在B號盒子的概率;
(Ⅱ)記ξ為落在A盒中所有小球編號的數(shù)字之和(若盒中無球,則數(shù)字之和為0),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
m2x+
2
2x+1
是奇函數(shù).
(1)求m;
(2)求f(x)的值域;
(3)判斷f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x和y之間的幾何數(shù)據(jù)(見表),假設(shè)根據(jù)右表數(shù)據(jù)所得線性回歸直線方程為y=
b
x+
a
,某同學(xué)根據(jù)上表中的兩組數(shù)據(jù)(3,1)和(4,3)求得的直線方程為y=
b
x+a′,請根據(jù)散點(diǎn)圖的分布情況,判斷以下結(jié)論正確的是( 。
x123456
y021334
A、
b
>b′,
a
>a′
B、
b
>b′,
a
<a′
C、
b
<b′,
a
<a′
D、
b
<b′,
a
>a′

查看答案和解析>>

同步練習(xí)冊答案