已知拋物線y2=2px(p>0)的焦點(diǎn)F,點(diǎn)A在拋物線上且|AF|=2p,若線段AF被雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線平分,則該雙曲線的離心率為( 。
A、
7
2
B、
5
2
C、
3
D、2
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:先求出AF的中點(diǎn)坐標(biāo),再求出雙曲線的離心率.
解答:解:拋物線y2=2px(p>0)的焦點(diǎn)F(
p
2
,0),由對(duì)稱性,不妨設(shè)A(x0,y0)在第一象限,則
AF=x0+
p
2
=2P,∴x0=
3p
2
,y0=
3
p,
∴AF的中點(diǎn)坐標(biāo)為(p,
3
p
2
),
b
a
=
3
2

∴e=
1+(
b
a
)2
=
7
2

故選:A.
點(diǎn)評(píng):本題考查雙曲線的簡(jiǎn)單性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在基本框圖中,矩形表示( 。
A、起止框B、輸入輸出框
C、處理框D、判斷框

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)y=f(x)的圖象是連續(xù)不斷的,若對(duì)任意實(shí)數(shù)x,存在實(shí)常數(shù)t使得f(t+x)=-tf(x)恒成立,則稱f(x)是一個(gè)“關(guān)于t函數(shù)”.有下列“關(guān)于t函數(shù)”的結(jié)論:
①f(x)=0是常數(shù)函數(shù)中唯一一個(gè)“關(guān)于t函數(shù)”;
②“關(guān)于
1
2
函數(shù)”至少有一個(gè)零點(diǎn);
③f(x)=x2是一個(gè)“關(guān)于t函數(shù)”.
其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos2x+sinx(0≤x≤
π
2
)的最大值為( 。
A、-
3
2
B、0
C、
9
8
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(x1,y1),B(x2,y2)是拋物線y2=4x上的兩個(gè)動(dòng)點(diǎn),且|AB|=8,則x1+x2的最小值是( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一動(dòng)圓過(guò)點(diǎn)A(0,1),圓心在拋物線y=
1
4
x2上,且恒與定直線相切,則直線l的方程為( 。
A、x=1
B、x=
1
32
C、y=-
1
32
D、y=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=loga(x-1)過(guò)定點(diǎn)F,F(xiàn)為拋物線y2=2px的焦點(diǎn),則該拋物線的方程是( 。
A、y2=2x
B、y2=4x
C、y2=8x
D、y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=m與拋物線y2=4x交于點(diǎn)A,與圓(x-1)2+y2=4的實(shí)線部分交于點(diǎn)B,F(xiàn)為拋物線的焦點(diǎn),則三角形ABF的周長(zhǎng)的取值范圍是( 。
A、(2,4)
B、(4,6)
C、[2,4]
D、[4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
x-
1
4
sinx-
3
4
cosx的圖象在點(diǎn)A(x0,y0)處的切線斜率為1,則tanx0=( 。
A、-
3
B、
3
C、-
3
3
D、
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案