求證:
32
-
3
是無(wú)理數(shù).
考點(diǎn):反證法與放縮法
專題:證明題,反證法,不等式的解法及應(yīng)用
分析:直接利用反證法的證明方法,推出矛盾即可.
解答: 證明:假設(shè)
3
是有理數(shù),則不妨設(shè)
3
=
m
n
(m,n為互質(zhì)正整數(shù)),
從而:(
m
n
2=3,m2=3n2,可見(jiàn)m是3的倍數(shù).
設(shè)m=3p(p是正整數(shù)),則 3n2=m2=9p2,可見(jiàn)n 也是3的倍數(shù).
這樣,m,n就不是互質(zhì)的正整數(shù)(矛盾).
3
=
m
n
不可能,
3
是無(wú)理數(shù).
同理
32
是無(wú)理數(shù),
從而
32
-
3
是無(wú)理數(shù).
點(diǎn)評(píng):本題考查反證法的證明方法的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)對(duì)定義域內(nèi)的任意x都滿足f[f(x)]=x,則稱f(x)為“不動(dòng)點(diǎn)函數(shù)”;若存在x0使得f[f(x0)]=x0,則稱x0為函數(shù)y=f(x)的“不動(dòng)點(diǎn)”
(Ⅰ)已知一次函數(shù)y=kx+b(k>0)是“不動(dòng)點(diǎn)函數(shù)”,求實(shí)數(shù)k,b的值;
(Ⅱ)求證:二次函數(shù)y=ax2+c不可能是“不動(dòng)點(diǎn)函數(shù)”
(Ⅲ)寫出正弦函數(shù)y=sinx的所有不動(dòng)點(diǎn)(不必寫過(guò)程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

近年來(lái),福建省大力推進(jìn)海峽西岸經(jīng)濟(jì)區(qū)建設(shè),福州作為省會(huì)城市,在發(fā)展過(guò)程中,交通狀況一直倍受有關(guān)部門的關(guān)注,據(jù)有關(guān)統(tǒng)計(jì)數(shù)據(jù)顯示上午6點(diǎn)到10點(diǎn),車輛通過(guò)福州市區(qū)二環(huán)路某一路段的用時(shí)y(分鐘)與車輛進(jìn)入該路段的時(shí)刻t之間關(guān)系可近似地用如下函數(shù)給出:y=
-
1
8
t3+
3
2
t2-14(6≤t<9)
9lnt-t(9≤t≤10)
.求上午6點(diǎn)到10點(diǎn),通過(guò)該路段用時(shí)最多的時(shí)刻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)比較大小:3.30.7和3.40.8
(2)求值:27 
2
3
-2 log23×log2
1
8
+2log5
6+2
5
+
6-2
5
)-log54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且a1=-1,S5=15.
(1)求an;
(2)令bn=2 an(n=1,2,3,…),計(jì)算b1,b2和b3,由此推測(cè)數(shù)列{bn}是等差數(shù)列還是等比數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
k
x
(k>0),g(x)=x4+ax3+bx2+ax+1(a,b∈R)
(1)若|f(x)|的最小值為2,求k值;
(2)設(shè)函數(shù)y=g(x)有零點(diǎn),求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1,等腰梯形ABCD中,AD∥BC,AB=AD,∠ABC=60°,E是BC的中點(diǎn),如圖2,將△ABE沿AE折起,使面BAE⊥面AECD,連接BC,BD,P是棱BC上的動(dòng)點(diǎn).
(1)求證:AE⊥BD;
(2)若AB=2,當(dāng)
BP
BC
為何值時(shí),二面角P-ED-C的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

五位同學(xué)圍成一圈依次循環(huán)報(bào)數(shù),規(guī)定,第一位同學(xué)首次報(bào)出的數(shù)為1,第二位同學(xué)首次報(bào)出的數(shù)為2,之后每位同學(xué)所報(bào)出的數(shù)都是前兩位同學(xué)所報(bào)出數(shù)的乘積的個(gè)位數(shù)字,則第2013個(gè)被報(bào)出的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若S1=
2
1
x2dx,S2=
2
1
1
x
dx,S3=
2
1
exdx,則S1,S2,S3的大小關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案