【題目】隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲蓄存款逐年增長,設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲蓄存款(單位:億元)的數(shù)據(jù)如下:
(1)求關(guān)于的線性回歸方程;
(2)2018年城鄉(xiāng)居民儲蓄存款前五名中,有三男和兩女.現(xiàn)從這5人中隨機(jī)選出2人參加某訪談節(jié)目,求選中的2人性別不同的概率.
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: ,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)圍成的菱形的面積為,橢圓的一個(gè)焦點(diǎn)為圓的圓心.
(1)求橢圓的方程;
(2)若M,N為橢圓上的兩個(gè)動點(diǎn),直線OM,ON的斜率分別為,當(dāng)時(shí),△MON的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同,A為橢圓C的右頂點(diǎn),以A為圓心的圓與直線相交于P, 兩點(diǎn),且
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程和圓A的方程;
(Ⅱ)不過原點(diǎn)的直線與橢圓C交于M、N兩點(diǎn),已知OM,直線,ON的斜率成等比數(shù)列,記以O(shè)M、ON為直徑的圓的面積分別為S1、S2,試探究的值是否為定值,若是,求出此值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋內(nèi)有個(gè)不同的紅球,個(gè)不同的白球,
(1)從中任取個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?
(2)若取一個(gè)紅球記分,取一個(gè)白球記分,從中任取個(gè)球,使總分不少于分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行演講比賽,10位評委對兩位選手的評分如下:
甲 7.5 7.5 7.8 7.8 8.0 8.0 8.2 8.3 8.4 9.9
乙7.5 7.8 7.8 7.8 8.0 8.0 8.3 8.3 8.5 8.5
選手的最終得分為去掉一個(gè)最低分和一個(gè)最高分之后,剩下8個(gè)評分的平均數(shù).那么,這兩個(gè)選手的最后得分是多少?若直接用10位評委評分的平均數(shù)作為選手的得分,兩位選手的排名有變化嗎?你認(rèn)為哪種評分辦法更好?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為 (參考數(shù)據(jù):,,)
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線的左焦點(diǎn)作圓的切線,切點(diǎn)為,延長交拋物線于點(diǎn),若是線段的中點(diǎn),則雙曲線的離心率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)統(tǒng)計(jì)ABO血型具有民族和地區(qū)差異.在我國H省調(diào)查了30488人,四種血型的人數(shù)如下:
血型 | A | B | O | AB |
人數(shù)/人 | 7704 | 10765 | 8970 | 3049 |
頻率 |
(1)計(jì)算H省各種血型的頻率并填表(精確到0.001);
(2)如果從H省任意調(diào)查一個(gè)人的血型,那么他是O型血的概率大約是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com