【題目】以下結(jié)論正確的序號(hào)有_________

(1)根據(jù)列聯(lián)表中的數(shù)據(jù)計(jì)算得出≥6.635, 而P(≥6.635)≈0.01,則有99% 的把握認(rèn)為兩個(gè)分類變量有關(guān)系.

(2)在殘差圖中,殘差點(diǎn)比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān).

(3)在線性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大;越小,相關(guān)程度越小.

(4)在回歸直線中,變量時(shí),變量的值一定是15.

【答案】(1)(3).

【解析】分析根據(jù)獨(dú)立性檢驗(yàn)殘差圖、相關(guān)系數(shù)回歸分析的定義及性質(zhì),逐一分析四個(gè)答案的真假即可.

詳解:對(duì)于(1),根據(jù)2×2列聯(lián)表中的數(shù)據(jù)計(jì)算得出≥6.635, 而P(≥6.635)≈0.01,則有99%的把握認(rèn)為兩個(gè)分類變量有關(guān)系,故(1)正確

對(duì)于(2),根據(jù)殘差圖的意義可得,當(dāng)帶狀區(qū)域的寬度較小時(shí),說明選用的模型比價(jià)合適,而當(dāng)帶狀區(qū)域的寬度較大時(shí),說明選用的模型不合適,(2)不正確

對(duì)于(3),在線性回歸分析中相關(guān)系數(shù)為r,|r|越接近于1,則相關(guān)程度越大;|r|越接近于0則相關(guān)程度越小(3)正確

對(duì)于(4),在回歸直線y=0.5x85中,當(dāng)x=200時(shí),y=15,但實(shí)際觀測值可能不是15(4)不正確

綜上可得(1)(3)正確

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin( )(A>0,ω>0,)的部分圖象如圖所示.若橫坐標(biāo)分別為-1、1、5的三點(diǎn)M,N,P都在函數(shù)f(x)的圖象上,則sinMNP的值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話水平測試,發(fā)現(xiàn)成績服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來抽樣出的10名學(xué)生的成績.

(1)計(jì)算這10名學(xué)生的成績的均值和方差;

(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.

由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績在(76,97)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)fx)同時(shí)滿足:

①對(duì)于定義域上的任意x恒有fx+f(﹣x)=0,

②對(duì)于定義域上的任意x1,x2,當(dāng)x1x2時(shí),恒有0,則稱函數(shù)fx)為理想函數(shù)

給出下列四個(gè)函數(shù)中①fx; fx fx;④fx,

能被稱為理想函數(shù)的有_______________(填相應(yīng)的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱柱ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點(diǎn).

(1)證明B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的正弦值.
(3)設(shè)點(diǎn)M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為 ,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)對(duì)任意實(shí)數(shù)x,y恒有fx+y)=fx)+fy)且當(dāng)x>0,fx)<0.

給出下列四個(gè)結(jié)論:

f(0)=0;fx)為偶函數(shù);

fx)為R上減函數(shù);fx)為R上增函數(shù).

其中正確的結(jié)論是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列中, , .

(1)求的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】環(huán)保組織隨機(jī)抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測單位體積河水中重金屬含量,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值;

(Ⅱ)假設(shè)某企業(yè)每天由重金屬污染造成的經(jīng)濟(jì)損失(單位:元)與單位體積河水中重金屬含量

的關(guān)系式為,若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天經(jīng)濟(jì)損失不超過500元的概率.

查看答案和解析>>

同步練習(xí)冊答案