在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

(Ⅰ)(Ⅱ),存在M

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點(diǎn)為,離心率為.
(1)若,求橢圓的方程; (2)設(shè)直線與橢圓相交于兩點(diǎn),分別為線段的中點(diǎn).若坐標(biāo)原點(diǎn)在以為直徑的圓上,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公園內(nèi)有一橢圓形景觀水池,經(jīng)測量知,橢圓長軸長為20米,短軸長為16米,現(xiàn)以橢圓長軸所在直線為軸,短軸所在直線為軸,建立平面直角坐標(biāo)系,如圖所示:

(1)為增加景觀效果,擬在水池內(nèi)選定兩點(diǎn)安裝水霧噴射口,要求橢圓上各點(diǎn)到這兩點(diǎn)距離之和都相等,請指出水霧噴射口的位置(用坐標(biāo)表示),并求橢圓的方程。
(2)為了增加水池的觀賞性,擬劃出一個(gè)以橢圓的長軸頂點(diǎn)A、短軸頂點(diǎn)B及橢圓上某點(diǎn)M構(gòu)成的三角形區(qū)域進(jìn)行夜景燈光布置,請確定點(diǎn)M的位置,使此三角形區(qū)域面積最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線的兩個(gè)焦點(diǎn)分別為,離心率為2.
(1)求雙曲線的漸近線方程;
(2)過點(diǎn)能否作出直線,使與雙曲線交于、兩點(diǎn),且,若存在,求出直線方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線過點(diǎn)交拋物線于兩點(diǎn).
(1)證明:直線的斜率互為相反數(shù); 
(2)求面積的最小值;
(3)當(dāng)點(diǎn)的坐標(biāo)為,.根據(jù)(1)(2)推測并回答下列問題(不必說明理由):①直線的斜率是否互為相反數(shù)? ②面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓經(jīng)過點(diǎn),且兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成等腰直角三角形.
(1)求橢圓的方程;
(2)動(dòng)直線交橢圓C于A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得以AB為直徑的圓恒過點(diǎn)T。若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長為2.
(1)求雙曲線C的方程;
(2)若直線lykx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;
(3)在(2)的條件下,線段AB的垂直平分線l0y軸交于M(0,m),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)求與雙曲線有共同漸近線,并且經(jīng)過點(diǎn) (-3,)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且橢圓過點(diǎn)三點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)為橢圓上不同于的任意一點(diǎn),,求內(nèi)切圓的面積的最大值,并指出其內(nèi)切圓圓心的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案