已知數(shù)列滿足,且對任意非負整數(shù)均有:.
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:.
:(1),;(2);(3)詳見解析.
解析試題分析:(1)對m、n賦值,想方設法將條件變出.為了得到,顯然令m=n即可.
為了得到,令m=1,n=0即可.
(2)首先要想辦法得相鄰兩項(三項也可)間的遞推關系.
要證數(shù)列是等差數(shù)列,只需證明為常數(shù)即可.
(3)數(shù)列中有關和的不等式的證明一般有以下兩種方向,一是先求和后放縮,二是先放縮后求和.在本題中,易得,∴
這是典型的用裂項法求和的題.故先求出和來,然后再用放縮法證明不等式.
試題解析:(1)令得, 1分
令,得,∴ 3分
(2)令,得:
∴,又,
∴數(shù)列是以2為首項,2為公差的等差數(shù)列.
∴
∴
∴ 9分
(3)∴
∴ 13分
考點:1、遞推數(shù)列;2、等差數(shù)列;3、不等式的證明.
科目:高中數(shù)學 來源: 題型:解答題
設正數(shù)列的前項和為,且.
(1)求數(shù)列的首項;
(2)求數(shù)列的通項公式;
(3)設,是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知直角的三邊長,滿足
(1)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(2)已知成等比數(shù)列,若數(shù)列滿足,證明數(shù)列中的任意連續(xù)三項為邊長均可以構成直角三角形,且是正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求數(shù)列{an}的通項公式an;
(II)求數(shù)列的前n項和Sn的最大值及相應的n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列的通項公式為,在等差數(shù)列數(shù)列中,,且,又、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前3項和,且、、成等比數(shù)列.
(1)求數(shù)列的通項公式及前n項的和;
(2)設的前n項和,證明:;
(3)對(2)問中的,若對一切恒成立,求實數(shù)的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com