精英家教網 > 高中數學 > 題目詳情
已知△ABC的三個內角A、B、C的對邊分別為a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求△ABC周長的最大值.
【答案】分析:(1)根據余弦定理表示出cosA,把已知得等式變形后代入即可求出cosA的值,由A的范圍,利用特殊角的三角函數值即可求出A的度數,然后把所求的式子利用兩角和與差的正弦函數公式及誘導公式化簡,將sinA的值代入即可求出值;
(2)由a=2和sinA的值,根據正弦定理表示出b和c,代入三角形的周長a+b+c中,利用兩角和與差的正弦函數公式及特殊角的三角函數值化為一個角的正弦函數,根據正弦函數的值域即可得到周長的最大值.
解答:解:(1)∵b2+c2=a2+bc,∴a2=b2+c2-bc,
結合余弦定理知cosA===
又A∈(0,π),∴A=,
∴2sinBcosC-sin(B-C)=sinBcosC+cosBsinC
=sin(B+C)=sin[π-A]=sinA=;
(2)由a=2,結合正弦定理得:
====,
∴b=sinB,c=sinC,
則a+b+c=2+sinB+sinC
=2+sinB+sin(-B)
=2+2sinB+2cosB=2+4sin(B+),
可知周長的最大值為6.
點評:此題考查學生靈活運用正弦、余弦定理化簡求值,靈活運用兩角和與差的正弦函數公式化簡求值,掌握正弦函數的值域,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC的三個頂點的A、B、C及平面內一點P滿足
PA
+
PB
+
PC
=
AB
,下列結論中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A、B、C及平面內一點P,若
PA
+
PB
+
PC
=
AB
,則點P與△ABC的位置關系是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點ABC及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數λ滿足:
AB
+
AC
=λ
AP
,則λ的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過橢圓
x2
16
+
y2
4
=1
內一點M(2,1)引一條弦,使得弦被M點平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三個頂點A,B,C及平面內一點P滿足:
PA
+
PB
+
PC
=
0
,若實數λ 滿足:
AB
+
AC
AP
,則λ的值為(  )
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習冊答案