【題目】“開門大吉”是某電視臺(tái)推出的游戲節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場(chǎng)外調(diào)查中,發(fā)現(xiàn)參賽選手大多在以下兩個(gè)年齡段:21~30,31~40(單位:歲),統(tǒng)計(jì)這兩個(gè)年齡段選手答對(duì)歌曲名稱與否的人數(shù)如圖所示.
(參考公式:K2= ,其中n=a+b+c+d)
(1)寫出2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為答對(duì)歌曲名稱與否和年齡有關(guān),說明你的理由.(下面的臨界值表供參考)
P(K2≥k0) | 0.1 | 0.05 | 0.01 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
(2)在統(tǒng)計(jì)過的參考選手中按年齡段分層選取9名選手,并抽取3名幸運(yùn)選手,求3名幸運(yùn)選手中在21~30歲年齡段的人數(shù)的分布列和數(shù)學(xué)期望.
【答案】
(1)解:2×2列聯(lián)表
正確 | 錯(cuò)誤 | 合計(jì) | |
21~30 | 10 | 30 | 40 |
31~40 | 10 | 70 | 80 |
合計(jì) | 20 | 100 | 120 |
∴K2= =3>2.706
有90%的把握認(rèn)為猜對(duì)歌曲名稱與否和年齡有關(guān)
(2)解:按照分層抽樣方法可知:21~30(歲)抽取3人,31~40(歲)抽取6人.
設(shè)3名選手中在21~30歲之間的人數(shù)為ξ,可能取值為0,1,2,3
P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,P(ξ=3)= = .
ξD的分布列
ξ | 0 | 1 | 2 | 3 |
P |
E(ξ)=0× +1× +2× +3× =1
【解析】(1)根據(jù)所給的二維條形圖得到列聯(lián)表,利用公式求出k2=3>2.706,即可得出結(jié)論.(2)設(shè)3名選手中在20~30歲之間的人數(shù)為ξ,可能取值為0,1,2,3,求出概率,列出分布列,求解期望即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動(dòng)點(diǎn),求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列中, , ,其前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足,其前項(xiàng)和為為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2 )=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(xy)=f(x)+f(y).
(1) 若x,y∈R,求f(1),f(-1)的值; (2)若x,y∈R,判斷y=f(x)的奇偶性;
(3)若函數(shù)f(x)在其定義域(0,+∞)上是增函數(shù),f(2)=1,f(x)+f(x-2)≤3,求x的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ex﹣lnx.
(參考數(shù)據(jù):e≈2.718,ln2≈0.693,ln3≈1.099,ln5≈1.609,ln7≈1.946)
(1)求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn)x0;
(2)求函數(shù)f(x)的極值點(diǎn)x0的近似值x′,使得|x′﹣x0|<0.1;
(3)求證:f(x)>2.3對(duì)x∈(0,+∞)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市“招手即停”公共汽車的票價(jià)按下列規(guī)則制定:
5公里以內(nèi)(含5公里),票價(jià)2元;
5公里以上,每增加5公里,票價(jià)增加1元(不足5公里的按5公里計(jì)算).如果某條線路的總里程為20公里,請(qǐng)根據(jù)題意.
(1)寫出票價(jià)與里程之間的函數(shù)解析式;
(2)根據(jù)(1)寫出的函數(shù)解析式試畫出該函數(shù)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱豬ABCD﹣A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,A1A=AB=2,E為棱AA1的中點(diǎn).
(1)證明:B1C1⊥CE;
(2)求二面角B1﹣CE﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對(duì)數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實(shí)數(shù) t ,使不等式對(duì)一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com