已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點(diǎn)F(1,0),右頂點(diǎn)A,且|AF|=1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動(dòng)直線l:y=kx+m與橢圓C有且只有一個(gè)交點(diǎn)P,且與直線x=4交于點(diǎn)Q,問:是否存在一個(gè)定點(diǎn)M(t,0),使得
MP
MQ
=0
.若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)根據(jù)橢圓的右焦點(diǎn)F(1,0),右頂點(diǎn)A,且|AF|=1,求出橢圓的幾何量,即可求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:y=kx+m,代入橢圓方程,求出P的坐標(biāo),求出向量的坐標(biāo),利用
MP
MQ
=0
,即可得出結(jié)論.
解答: 解:(1)由c=1,a-c=1,∴a=2,∴b=
3
,
∴橢圓C的標(biāo)準(zhǔn)方程為
x2
4
+
y2
3
=1
.-------------(4分)
(2)由
y=kx+m
3x2+4y2=12
得:(3+4k2)x2+8kmx+4m2-12=0,-------------(6分)
∴△=64k2m2-4(3+4k2)(4m2-12)=0,即m2=3+4k2
xp=-
4km
3+4k2
=-
4k
m
,yp=kxp+m=-
4k2
m
+m=
3
m
,即P(-
4k
m
,
3
m
)
.---------(9分)
∵M(jìn)(t,0).
又Q(4,4k+m),
MP
=(-
4k
m
-t,
3
m
)
,
MQ
=(4-t,4k+m)
,
MP
MQ
=(-
4k
m
-t)•
(4-t)+
3
m
•(4k+m)
=t2-4t+3+
4k
m
(t-1)=0
恒成立,
t=1
t2-4t+3=0
,即t=1.
∴存在點(diǎn)M(1,0)適合題意.------------(12分)
點(diǎn)評(píng):本題考查圓的方程,考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則|AB|的最小值為(  )
A、
p
2
B、p
C、2p
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩個(gè)地區(qū)高三年級(jí)分別有33000人,30000人,為了了解兩個(gè)地區(qū)全體高三年級(jí)學(xué)生在該地區(qū)二?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣方法從兩個(gè)地區(qū)一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布統(tǒng)計(jì)表,規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀.
甲地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)231015
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15x31
乙地區(qū):
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1298
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y3
(Ⅰ)計(jì)算x,y的值;
(Ⅱ)根據(jù)抽樣結(jié)果分別估計(jì)甲地區(qū)和乙地區(qū)的優(yōu)秀率;若將此優(yōu)秀率作為概率,現(xiàn)從乙地區(qū)所有學(xué)生中隨機(jī)抽取3人,求抽取出的優(yōu)秀學(xué)生人數(shù)ξ的數(shù)學(xué)期望;
(Ⅲ)根據(jù)抽樣結(jié)果,從樣本中優(yōu)秀的學(xué)生中隨機(jī)抽取3人,求抽取出的甲地區(qū)學(xué)生人數(shù)η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),其左、右焦點(diǎn)分別為F1、F2,過F1作直線交橢圓于P、Q兩點(diǎn),△F2PQ的周長為4
3

(1)若橢圓的離心率e=
3
3
,求橢圓的方程;
(2)若M為橢圓上一點(diǎn),
MF1
MF2
=1,求△MF1F2的面積最大時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=x+
1-x2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中的一個(gè)橢圓C,它的中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0)
,右頂點(diǎn)為D(2,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程; 
(Ⅱ)設(shè)不過原點(diǎn)的直線l:y=x+m與橢圓C交于A,B兩點(diǎn).
     ①求實(shí)數(shù)m的取值范圍;
     ②求實(shí)數(shù)m取何值時(shí)△AOB的面積最大,△AOB面積的最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸,在兩種坐標(biāo)系中取相同單位的長度.已知直線l的方程為
ρcosθ-ρsinθ-1=0(ρ>0),曲線C的參數(shù)方程為
x=2cosα
y=2+2sinα
(α為參數(shù)),點(diǎn)M是曲線C上的一動(dòng)點(diǎn).
(Ⅰ)求線段OM的中點(diǎn)P的軌跡方程;
(Ⅱ)求曲線C上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖的程序框圖,輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={4},B={1,2},C={1,3,5},從這三個(gè)集合中各取一個(gè)元素構(gòu)成空間直角坐標(biāo)系中的點(diǎn)的坐標(biāo),則確定的不同點(diǎn)的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案