【題目】下列關(guān)于充分必要條件的判斷中,錯(cuò)誤的是( )
A.“”是“”的充分條件
B.“”是“”的必要條件
C.“”是“”的充要條件
D.“,”是“”的非充分非必要條件
【答案】B
【解析】
由正弦函數(shù)的圖象和性質(zhì),可判斷A;由a,b的符號(hào),可判斷B;
由基本不等式的條件,可判斷C;由基本不等式等號(hào)成立的條件,可判斷D.
解:由于x∈(0,),可得sinx∈(0,1),即有sinx∈(2,+∞),
則“x∈(0,)”是“sinx2”的充分條件,正確;
由ab≥1,可能a,b都小于0,a+b<0,則“a+b≥2”不是“ab≥1”的必要條件;
由x>0可得x;反之可得x>0,“x>0”是“x”的充要條件;
a>0,b>0可得a+b≥2,若a+b,可能a>0,b=0,
則a>0,b>0”是“a+b”的非充分非必要條件.
綜上可得A,C,D正確;B錯(cuò)誤.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的圖像在處的切線方程;
(2)求函數(shù)的極大值;
(3)若對(duì)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求證:在區(qū)間是增函數(shù);
(2)設(shè),若對(duì)任意的,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在橢圓上,、分別為的左、右頂點(diǎn),直線與的斜率之積為,為橢圓的右焦點(diǎn),直線.
(1)求橢圓的方程;
(2)直線過(guò)點(diǎn)且與橢圓交于、兩點(diǎn),直線、分別與直線交于、兩點(diǎn).試問(wèn):以為直徑的圓是否過(guò)定點(diǎn)?如果是,求出定點(diǎn)坐標(biāo),否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定函數(shù)、,定義.
(1)證明:;
(2)若,,證明:是周期函數(shù);
(3)若,,,,,證明:是周期函數(shù)的充要條件是為有理數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的定義域恰是不等式的解集,其值域?yàn)?/span>,函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>.
(1)求定義域和值域;
(2)試用單調(diào)性的定義法解決問(wèn)題:若存在實(shí)數(shù),使得函數(shù)在上單調(diào)遞減,上單調(diào)遞增,求實(shí)數(shù)的取值范圍并用表示;
(3)是否存在實(shí)數(shù),使成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某花圃為提高某品種花苗質(zhì)量,開(kāi)展技術(shù)創(chuàng)新活動(dòng),在,實(shí)驗(yàn)地分別用甲、乙方法培訓(xùn)該品種花苗.為觀測(cè)其生長(zhǎng)情況,分別在實(shí)驗(yàn)地隨機(jī)抽取各50株,對(duì)每株進(jìn)行綜合評(píng)分,將每株所得的綜合評(píng)分制成如圖所示的頻率分布直方圖.記綜合評(píng)分為80及以上的花苗為優(yōu)質(zhì)花苗.
(1)求圖中的值;
(2)填寫(xiě)下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為優(yōu)質(zhì)花苗與培育方法有關(guān).
優(yōu)質(zhì)花苗 | 非優(yōu)質(zhì)花苗 | 合計(jì) | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合計(jì) |
附:下面的臨界值表僅供參考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)存在單調(diào)增區(qū)間,求實(shí)數(shù)的取值范圍;
(2)若,為函數(shù)的兩個(gè)不同極值點(diǎn),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com