已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別是F1、F2,離心率為e.直線l:y=ex+a與x軸、y軸分別交于點(diǎn)A、B,M是直線l與橢圓C的一個(gè)公共點(diǎn),P是點(diǎn)F1關(guān)于直線l的對稱點(diǎn).設(shè).
(1)證明λ=1-e2;
(2)確定λ的值,使得ΔPF1F2是等腰三角形.
解:(1)證法一:因?yàn)锳、B分別是直線l:y=ex+a與x軸、y軸的交點(diǎn).所以A、B的坐標(biāo)分別是(,0),(0,a).由得 這里c=,所以點(diǎn)M的坐標(biāo)是(-c,). 由得(,)=λ(,a) 即,解得λ=1-e2. 證法二:因?yàn)锳、B分別是直線l:y=ex+a與x軸、y軸的交點(diǎn),所以A、B的坐標(biāo)分別是(,0),(0,a).設(shè)M的坐標(biāo)是(x0,y0),由得(,y0)=λ(,a). 所以 因?yàn)辄c(diǎn)M在橢圓上,所以=1. 即=1,所以=1. e4-2(1-λ)e2+(1-λ)2=0, 解得e2=1-λ,即λ=1-e2. (2)解法一:因?yàn)镻F1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角.要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|、即|PF1|=c. 設(shè)點(diǎn)F1到l的距離為d,由|PF1|=d==c, 得=e,所以e2=.于是λ=1-e2=. 即當(dāng)λ=時(shí),△PF1F2為等腰三角形. 解法二:因?yàn)镻F1⊥l,所以∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有|PF1|=|F1F2|. 設(shè)點(diǎn)P的坐標(biāo)(x0,y0),則解得 由|PF1|=|F1F2| 得[]2+[]2=4c2,兩邊同時(shí)除以4a2,化簡得=e2. 從而e2=.于是λ=1-e2=. 即當(dāng)λ=1-e2=時(shí),△PF1F2為等腰三角形. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省蒼南縣錢高、靈溪二高2011屆高三上學(xué)期第一次月考聯(lián)考文科數(shù)學(xué)試題 題型:044
已知橢圓C:=1(a>b>0)的離心率e=,左、右焦點(diǎn)分別為F1、F2,點(diǎn)P(2,),點(diǎn)F2在線段PF1的中垂線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:kx+m與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角分別為α,β且α+β=π,求證:直線l過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省南京市金陵中學(xué)2011屆高三第四次模擬考試數(shù)學(xué)試題 題型:044
已知橢圓C:=1(a>b>0),⊙O:x2+y2=b2,點(diǎn)A,F分別是橢圓C的左頂點(diǎn)和左焦點(diǎn),點(diǎn)P是⊙O上的動(dòng)點(diǎn).
(1)若P(-1,),PA是⊙O的切線,求橢圓C的方程;
(2)是否存在這樣的橢圓C,使得是常數(shù)?如果存在,求C的離心率,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線l的方程為x=,短軸長為2.
(1)求橢圓C的方程;
(2)過定點(diǎn)B(1,0)作直線l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線PA1與直線QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0)的右準(zhǔn)線l的方程為x=,短軸長為2.
(1)求橢圓C的方程;
(2)過定點(diǎn)B(1,0)作直線l與橢圓C相交于P,Q(異于A1,A2)兩點(diǎn),設(shè)直線PA1與直線QA2相交于點(diǎn)M(2x0,y0).
①試用x0,y0表示點(diǎn)P,Q的坐標(biāo);
②求證:點(diǎn)M始終在一條定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:=1(a>b>0),F1、F2分別為橢圓C的左、右焦點(diǎn),A1、A2分別為橢圓C的左、右頂點(diǎn),過右焦點(diǎn)F2且垂直于x軸的直線與橢圓C在第一象限的交點(diǎn)為M(,2).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)直線l:x=my+1與橢圓C交于P、Q兩點(diǎn),直線A1P與A2Q交于點(diǎn)S.試問:當(dāng)直線l變化時(shí),點(diǎn)S是否恒在一條定直線上?若是,請寫出這條定直線的方程,并證明你的結(jié)論:若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com