精英家教網 > 高中數學 > 題目詳情
雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0),過焦點F1的弦AB(A、B在雙曲線的同支上)長為m,另一焦點為F2,求△ABF2的周長.
分析:利用雙曲線的定義可得|AF2|-|AF1|=2a,|BF2|-|AF1|=2a,結合|AF1|+|BF1|=|AB|=m,即可求得△ABF2的周長.
解答:解:∵|AF2|-|AF1|=2a,|BF2|-|AF1|=2a,…(2分)
∴(|AF2|-|AF1|)+(|BF2|-|BF1|)=4a,…(4分)
又|AF1|+|BF1|=|AB|=m,
∴|AF2|+|BF2|=4a+(|AF1|+|BF1|)=4a+m.…(6分)
∴△ABF2的周長等于|AF2|+|BF2|+|AB|=4a+2m.…(8分)
點評:本題考查雙曲線的簡單性質,掌握雙曲線的定義是解決問題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)
的中心和左焦點,點P為雙曲線右支上的任意一點,則
OP
FP
的取值范圍為( 。
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-y2=1(a>0)
的一條準線方程為x=
3
2
,則a等于
 
,該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設圓C的圓心為雙曲線
x2
a2
-y2=1(a>0)
的左焦點,且與此雙曲線的漸近線相切,若圓C被直線l:x-y+2=0截得的弦長等于
2
,則a等于( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若點O和點F(-2,0)分別是雙曲線
x2
a2
-y2=1(a>0)的中心和左焦點,點P為雙曲線右支上的一點,并且P點與右焦點F′的連線垂直x軸,則線段OP的長為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線
x2
a2
-y2=1
的一個焦點坐標為(-
3
,0)
,則其漸近線方程為( 。
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步練習冊答案