【題目】等腰直角三角形的斜邊AB為正四面體側棱,直角邊AE繞斜邊AB旋轉,則在旋轉的過程中,有下列說法:

(1)四面體EBCD的體積有最大值和最小值;

(2)存在某個位置,使得;

(3)設二面角的平面角為,則;

(4)AE的中點MAB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓.

其中,正確說法的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】分析首先結合正四面體的特征以及等腰直角三角形在旋轉的過程中對應的特點,得到相關的信息,結合題中所給的條件,以及相關的結論,認真分析,逐一對比,得到結果.

詳解:根據(jù)正四面體的特征,以及等腰直角三角形的特征,可以得到當直角邊繞斜邊旋轉的過程中,存在著最高點和最低點,并且最低點在底面的上方,所以四面體EBCD的體積有最大值和最小值,故(1)正確;

要想使,就要使落在豎直方向的平面內,而轉到這個位置的時候,使得滿足,但是就不滿足是等腰直角三角形了,所以(2)不正確;

利用二面角的平面角的定義,找到其平面角,可以判斷得出設二面角的平面角為,則,所以(3)是正確的;

根據(jù)平面截圓錐所得的截面可以斷定,AE的中點MAB的中點N連線交平面BCD于點P,則點P的軌跡為橢圓,所以(4)正確

故正確的命題的個數(shù)是3個,故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,由明代數(shù)學家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線與曲線有兩個不同的交點,則實數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)經(jīng)過點,且兩個焦點,的坐標依次為.

(1)求橢圓的標準方程;

(2)設,是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,若,證明:直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù),則不等式的解集是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,焦點在軸上的橢圓與焦點在軸上的橢圓都過點,中心都在坐標原點,且橢圓的離心率均為

求橢圓與橢圓的標準方程;

Ⅱ)過點M的互相垂直的兩直線分別與交于點A,B(點A、B不同于點M),當的面積取最大值時,求兩直線MA,MB斜率的比值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中, 是邊長為的等邊三角形, 分別是的中點.

(1)求證: 平面;

(2)求證: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某網(wǎng)店經(jīng)營的一種商品進行進價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價(元)之間的關系如下圖所示,該網(wǎng)店與這種商品有關的周開支均為25元.

(1)根據(jù)周銷售量圖寫出(件)與單價(元)之間的函數(shù)關系式;

(2)寫出利潤(元)與單價(元)之間的函數(shù)關系式;當該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為a的菱形ABCD中,E,F分別是PAAB的中點.

1)求證: EF||平面PBC;

2)求E到平面PBC的距離.

查看答案和解析>>

同步練習冊答案