曲線y=cosx+ex在點(diǎn)(0,f(0))處的切線方程為
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:由f(x)=cosx+ex,知f(0)=cos0+e0=2,f′(x)=-sinx+ex,由此利用導(dǎo)數(shù)的幾何意義能求出f(x)=cosx+ex在x=0處的切線方程.
解答: 解:∵f(x)=cosx+ex,
∴f(0)=cos0+e0=2,
f′(x)=-sinx+ex,
∴f′(0)=1,
∴f(x)=cosx+ex在x=0處的切線方程為:y-2=x,即x-y+2=0.
故答案為:x-y+2=0.
點(diǎn)評(píng):本題考查函數(shù)在某點(diǎn)處的切線方程的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意導(dǎo)數(shù)的幾何意義的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=A∪B={x∈N*|lgx<1},若A∩(CUB)={1,3,5,7,9},則集合B=( 。
A、{2,6,8}
B、{2,4,6,8}
C、{0,2,4,6,8}
D、{0,2,6,8}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線y=ax2(a>0)的焦點(diǎn)F作一條斜率不為0的直線交拋物線于A、B兩點(diǎn),若線段AF、BF的長(zhǎng)分別為m、n,則
mn
m+n
等于( 。
A、
1
2a
B、
1
4a
C、2a
D、
a
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線a、b、c和平面α、β,則下列命題中真命題的是
 

①若a∥b,b∥c,則a∥c;
②若a⊥b,b⊥c,則a⊥c;
③若a、b異面,b、c異面,則a、c異面;
④若a∥α,b∥α,則a∥b;
⑤若a∥α,a∥β,且α∩β=b,則a∥b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某同學(xué)同時(shí)拋擲兩顆骰子,得到的點(diǎn)數(shù)分別記為a、b,則雙曲線
x2
a2
-
y2
b2
=1的離心率e
5
的概率是(  )
A、
1
6
B、
1
4
C、
1
3
D、
1
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,CF⊥FB,BF=CF,G為BC的中點(diǎn),
(Ⅰ)求證:FG∥平面BDE;
(Ⅱ)求平面BDE與平面BCF所成銳二面角的大。
(Ⅲ)求四面體B-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓x2+
y2
4
=1短軸的左右兩個(gè)端點(diǎn)分別為A,B,直線l過(guò)定點(diǎn)(0,1)交橢圓于兩點(diǎn)C,D.
(1)若l與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),
CE
=
FD
,求直線l的方程:
(2)設(shè)直線AD,CB的斜率分別為k1k2,若k1:k2=2:1,求k的值.
(3)(理)設(shè)C(x1,y1),D(x2,y2),分別過(guò)C、D作斜率為-
4x1
y1
和-
4x2
y2
兩條直線l1和l2.記l1和l2的交點(diǎn)為M,求△MCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)條件sinα<0且cosα<0,確定θ是第
 
象限的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖有一個(gè)幾何體的三視圖(單位:cm),試畫出它的直觀圖,并計(jì)算這個(gè)幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案