設(shè)橢圓C1的離心率為5/13,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26.若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8,則曲線C2的標(biāo)準(zhǔn)方程為
A.(x/4)2-(y/3)2=1B.(x/13)2-(y/5)2=1
C.(x/3)2-(y/4)2=1D.(x/13)2-(y/12)2=1
A
橢圓C1焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為26,所以長(zhǎng)半軸長(zhǎng)是13,又離心率為5/13,故焦點(diǎn)是(5,0)(-5,0),若曲線C2上的點(diǎn)到橢圓C1的兩個(gè)焦點(diǎn)的距離的差的絕對(duì)值等于8
所以,曲線C2的標(biāo)準(zhǔn)方程為(x/4)2-(y/3)2=1  。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
為了加快經(jīng)濟(jì)的發(fā)展,某市選擇A、B兩區(qū)作為龍頭帶動(dòng)周邊地區(qū)的發(fā)展,決定在A、B兩區(qū)的周邊修建城際快速通道,假設(shè)A、B兩區(qū)相距個(gè)單位距離,城際快速通道所在的曲線為E,使快速通道E上的點(diǎn)到兩區(qū)的距離之和為4個(gè)單位距離.

(Ⅰ)以線段AB的中點(diǎn)O為原點(diǎn)建立如圖所示的直角坐標(biāo)系,求城際快速通道所在曲線E的方程;
(Ⅱ)若有一條斜率為的筆直公路l與曲線E交于P,Q兩點(diǎn),同時(shí)在曲線E上建一個(gè)加油站M(橫坐標(biāo)為負(fù)值)滿足,面積的最大值.                               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓上的點(diǎn)到直線的最大距離為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

動(dòng)點(diǎn)A到定點(diǎn)的距離的和為4,則動(dòng)點(diǎn)A的軌跡為 (     )
A.橢圓B.線段C.無(wú)圖形D.兩條射線;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題13分)已知離心率為的橢圓 經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)過(guò)左焦點(diǎn)且不與軸垂直的直線交橢圓、兩點(diǎn),若 (為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率,點(diǎn)F為橢圓的右焦點(diǎn),點(diǎn)A、B分別為橢圓的左、右頂點(diǎn),點(diǎn)M為橢圓的上頂點(diǎn),且滿足(1)求橢圓C的方程;
(2)是否存在直線,當(dāng)直線交橢圓于P、Q兩點(diǎn)時(shí),使點(diǎn)F恰為的垂心(三角形三條高的交點(diǎn))?若存在,求出直線方程;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是橢圓的兩個(gè)焦點(diǎn),是橢圓上的動(dòng)點(diǎn)(不能重合于長(zhǎng)軸的兩端點(diǎn)),的內(nèi)心,直線軸于點(diǎn),則       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的方程為它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,離心率過(guò)橢圓的右焦點(diǎn)F作與坐標(biāo)軸不垂直的直線交橢圓于A、B兩點(diǎn).(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)求直線的方程

查看答案和解析>>

同步練習(xí)冊(cè)答案