已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的最小正周期及單調(diào)遞減區(qū)間.

(Ⅰ);(Ⅱ)最小正周期為,單調(diào)遞減區(qū)間為.

解析試題分析:(1)直接計(jì)算的值,若式子的結(jié)果較復(fù)雜時,一般將函數(shù)解析式先化簡再求值;(2)求函數(shù)的最小正周期、單調(diào)區(qū)間等基本性質(zhì),一般先將函數(shù)解析式進(jìn)行化簡,即一般將三角函數(shù)解析式化為的形式,然后利用公式即可求出函數(shù)的最小正周期,利用復(fù)合函數(shù)法結(jié)合正弦函數(shù)的單調(diào)性即可求出函數(shù)相應(yīng)的單調(diào)區(qū)間,但首先應(yīng)該求函數(shù)的定義域.
試題解析:解(Ⅰ)
                    4分
(Ⅱ)由
的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/f/1md0t1.png" style="vertical-align:middle;" />
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6b/f/zjqfe1.png" style="vertical-align:middle;" />


所以的最小正周期為
因?yàn)楹瘮?shù)的單調(diào)遞減區(qū)間為,


所以的單調(diào)遞減區(qū)間為
13分
考點(diǎn):三角函數(shù)的周期、單調(diào)區(qū)間、輔助角變換

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且當(dāng)時,的最小值為2.
(1)求的值,并求的單調(diào)增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)縮短到原來的倍,再把所得圖象向右平移個單位,得到函數(shù),求方程在區(qū)間上的所有根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b,c分別為ΔABC三個內(nèi)角A,B,C的對邊長,.
(Ⅰ)求角A的大小;
(II)若a=,ΔABC的面積為1,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角所對的邊分別為,已知,
(Ⅰ)求的大;
(Ⅱ)若,求的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).(1)求的最大值和最小正周期;(2) 若,是第二象限的角,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知銳角中的內(nèi)角、的對邊分別為,定義向量,且.
(1)求的單調(diào)減區(qū)間;
(2)如果,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)用五點(diǎn)法畫出它在一個周期內(nèi)的閉區(qū)間上的圖象;

(2)求函數(shù)的單調(diào)增區(qū)間;
(3)若,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

的三邊為,滿足
(1)求的值;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知M(1+cos2x,1)、N(1,)(是常數(shù)),且
(O為坐標(biāo)原點(diǎn))
(1)求y關(guān)于x的函數(shù)關(guān)系式
(2)若時,最大值為2013,求a的值.

查看答案和解析>>

同步練習(xí)冊答案