【題目】已知函數(shù)f(x)= ﹣5x+4lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

【答案】
(1)解:要使f(x)有意義,則x的取值范圍是(0,+∞)所以函數(shù)的定義域?yàn)椋?,+∞)

因?yàn)?

由f'(x)>0得

因?yàn)閒'(x)=3x2+2ax,所以x=2,解得即f'(2)=0,或a=﹣3.

由f(1)=1+a+b=0得b=2

因?yàn)閒'(x)=3x2﹣6x=0,所以x1=0,x2=2,即x.

所以(﹣∞,0)的單調(diào)增區(qū)間為0;單調(diào)減區(qū)間為(0,2)


(2)解:由(1)知當(dāng)x=1時(shí),函數(shù)f(x)取得極大值為

當(dāng)x=4時(shí),函數(shù)f(x)取得極小值為f(4)=﹣12+4ln4


【解析】(1)求出函數(shù)的定義域與函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)的符號(hào)求解函數(shù)的單調(diào)區(qū)間.(2)利用(1)的結(jié)果真假求解函數(shù)的極值即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減,以及對(duì)函數(shù)的極值與導(dǎo)數(shù)的理解,了解求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]D,使f(x)在[a,b]上的值域?yàn)閇a,b],那么y=f(x)叫做閉函數(shù),現(xiàn)有f(x)= +k是閉函數(shù),那么k的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a>0,集合 ,集合B={x||2x﹣1|>5}.
(1)求集合A、B;
(2)若A∩B≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.設(shè)f(x)=
(1)求a,b的值;
(2)若不等式f(x)﹣k≥0在x∈[1,4]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)D是函數(shù)y=f(x)定義域內(nèi)的一個(gè)子區(qū)間,若存在x0∈D,使f(x0)=﹣x0 , 則稱x0是f(x)的一個(gè)“開心點(diǎn)”,也稱f(x)在區(qū)間D上存在開心點(diǎn).若函數(shù)f(x)=ax2﹣2x﹣2a﹣ 在區(qū)間[﹣3,﹣ ]上存在開心點(diǎn),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中, ,an+1=
(1)計(jì)算a2 , a3 , a4并猜想數(shù)列{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,PD⊥平面ABCD,DC⊥AD,BC∥AD,PD:DC:BC=1:1:

(1)若AD=DC,求異面直線PA,BC所成的角;
(2)求PB與平面PDC所成角大;
(3)求二面角D﹣PB﹣C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,A= ,則A∩(UB)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a﹣2)x+a﹣4;
(1)若函數(shù)y=f(x)在區(qū)間[1,2]上的最小值為4﹣a,求實(shí)數(shù)a的取值范圍;
(2)是否存在整數(shù)m,n,使得關(guān)于x的不等式m≤f(x)≤n的解集恰好為[m,n],若存在,求出m,n的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案