定義在R上的函數(shù),對任意不等的實數(shù)都有成立,又函數(shù)的圖象關于點(1,0)對稱,若不等式成立,則當1≤x<4時,的取值范圍是
A. B. C. D.
A
【解析】
試題分析:解:因為對任意不等實數(shù)x1,x2滿足所以函數(shù)f(x)是定義在R上的單調(diào)遞減函數(shù).因為函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,所以函數(shù)y=f(x)的圖象關于點(0,0)對稱,即函數(shù)f(x)是定義在R上的奇函數(shù).又因為對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立,所以f(x2-2x)≥f(-2y+y2)成立,所以根據(jù)函數(shù)的單調(diào)性可得:對于任意的x,y∈R,不等式x2-2x≥y2-2y成立,即(x-y)(x+y-2)≥0(1≤x≤4),所以可得其可行域,如圖所示:
因為=所以表示點(x,y)與點(0,0)連線的斜率,所以結合圖象可得:的最小值是直線OC的斜率- ,最大值是直線AB的斜率1,所以的范圍為:[故答案為:
考點:抽象函數(shù)的性質(zhì)
點評:解決此類問題的關鍵是熟練掌握抽象函數(shù)的性質(zhì)的證明與判斷,如單調(diào)性、奇偶性的證明與判斷,并且熟練的利用函數(shù)的性質(zhì)解有關的不等式,以及熟練掌握線性規(guī)劃問題,此題綜合性較強知識點也比較零散,對學生掌握知識與運用知識的能力有一定的要求.
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x1+x2 |
2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com