【題目】某醫(yī)療研究所為了檢驗?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未使用血清的人一年中的感冒記錄作比較,提出假設(shè)H:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計算的K2≈3.918,經(jīng)查臨界值表知P(K2≥3.841)≈0.05.則下列表述中正確的是( )
A.有95℅的把握認為“這種血清能起到預(yù)防感冒的作用”
B.若有人未使用該血清,那么他一年中有95℅的可能性得感冒
C.這種血清預(yù)防感冒的有效率為95℅
D.這種血清預(yù)防感冒的有效率為5℅
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點Q(ρ,θ),分別按下列條件求出點P的極坐標.
(1)點P是點Q關(guān)于極點O的對稱點;
(2)點P是點Q關(guān)于直線θ= 的對稱點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)的定義域為[0,4],則函數(shù)g(x)=f(x)+f(x2)的定義域為( )
A.[0,2]
B.[0,16]
C.[﹣2,2]
D.[﹣2,0]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,其中a>0,且函數(shù)f(x)的最大值是
(1)求實數(shù)a的值;
(2)若函數(shù)g(x)=lnf(x)﹣b有兩個零點,求實數(shù)b的取值范圍;
(3)若對任意的x∈(0,2),都有f(x)< 成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在定義域上為增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)在(Ⅰ)的條件下,若函數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)= (a∈R)是奇函數(shù),函數(shù)g(x)= 的定義域為(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上遞減,根據(jù)單調(diào)性的定義求實數(shù)m的取值范圍;
(3)在(2)的條件下,若函數(shù)h(x)=f(x)+g(x)在區(qū)間(﹣1,1)上有且僅有兩個不同的零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經(jīng)過的各站發(fā)往該站的郵袋各1個,同時又要裝上該站發(fā)往以后各站的郵袋各1個,設(shè)從第k站出發(fā)時,郵政車廂內(nèi)共有郵袋ak個(k=1,2,…,n).
(1)求數(shù)列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù),且f(2)=﹣
(1)求函數(shù)f(x)的解析式
(2)判斷函數(shù)f(x)在(0,1)上的單調(diào)性,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2+x),g(x)=ln(2﹣x)
(1)判斷函數(shù)h(x)=f(x)﹣g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com