【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線 的距離的最小值.

【答案】(1)點(diǎn) ; (2)

【解析】試題分析:(1)由的極坐標(biāo)為,利用可得點(diǎn)的直角坐標(biāo),曲線的參數(shù)方程展開可得: ,利用以及可得出直角坐標(biāo)方程;(2)直線的直角坐標(biāo)方程為,設(shè),則,利用點(diǎn)到直線的距離公式與三角函數(shù)的單調(diào)性值域即可得出.

試題解析:(1)點(diǎn)的直角坐標(biāo)為;

, 代入①,

可得曲線的直角坐標(biāo)方程為

(2)直線 的直角坐標(biāo)方程為,

設(shè)點(diǎn)的直角坐標(biāo)為,則

那么到直線的距離:

,

(當(dāng)且僅當(dāng)時(shí)取等號(hào)),

所以到直線的距離的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為.在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

(1)寫出直線的參數(shù)方程和曲線的直角坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,每條側(cè)棱的長(zhǎng)都是底面邊長(zhǎng)的倍,為側(cè)棱上的點(diǎn).

1)求證:

2)若平面,求二面角的大。

3)在(2)的條件下,側(cè)棱SC上是否存在一點(diǎn)E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù) .當(dāng)x=2時(shí),函數(shù) 取得極值
(1)求函數(shù)的解析式;
(2)若函數(shù) =k有3個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, , 的中點(diǎn), 的中點(diǎn).

(1)求證: ;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,直線 與以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)過橢圓的左頂點(diǎn)作直線,與圓相交于兩點(diǎn), ,若是鈍角三角形,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,cos2A﹣3cos(B+C)﹣1=0.
(1)求角A的大小;
(2)若△ABC的外接圓半徑為1,試求該三角形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx﹣ (a>0),g(x)=4x+ + ,且y=f(x+ )為偶函數(shù).設(shè)集合A={x|t﹣1≤x≤t+1}.
(1)若t=﹣ ,記f(x)在A上的最大值與最小值分別為M,N,求M﹣N;
(2)若對(duì)任意的實(shí)數(shù)t,總存在x1 , x2∈A,使得|f(x1)﹣f(x2)|≥g(x)對(duì)x∈[0,1]恒成立,試求a的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案