【題目】如圖,四棱錐中,,,,,.
(1)求證:平面平面;
(2)在線段上是否存在點,使得平面與平面所成銳二面角為?若存在,求的值;若不存在,說明理由.
【答案】(1)見證明;(2)見解析
【解析】
(1)利用余弦定理計算BC,根據(jù)勾股定理可得BC⊥BD,結(jié)合BC⊥PD得出BC⊥平面PBD,于是平面PBD⊥平面PBC;(2)建立空間坐標(biāo)系,設(shè)λ,計算平面ABM和平面PBD的法向量,令法向量的夾角的余弦值的絕對值等于,解方程得出λ的值,即可得解.
(1)證明:因為四邊形為直角梯形,
且, ,,
所以,
又因為。根據(jù)余弦定理得
所以,故.
又因為, ,且,平面,所以平面,
又因為平面PBC,所以
(2)由(1)得平面平面,
設(shè)為的中點,連結(jié) ,因為,
所以,,又平面平面,
平面平面,
平面.
如圖,以為原點分別以,和垂直平面的方向為軸正方向,建立空間直角坐標(biāo)系,
則,,,,,
假設(shè)存在滿足要求,設(shè),即,
所以,
易得平面的一個法向量為.
設(shè)為平面的一個法向量,,
由得,不妨取.
因為平面與平面所成的銳二面角為,所以,
解得,(不合題意舍去).
故存在點滿足條件,且.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】回收1噸廢紙可以生產(chǎn)出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()是奇函數(shù).
(1)求實數(shù)的值;
(2)用函數(shù)單調(diào)性的定義證明函數(shù)在上是增函數(shù);
(3)對任意的,若不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個頂點分別為A(2,0),B(2,0),焦點在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是拋物線的焦點,點,分別在拋物線和圓的實線部分上運動,且總是平行于軸,則周長的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底,為實常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,M是AB的中點.
(1)求證:;
(2)求二面角的余弦值;
(3)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com