某大學(xué)高等數(shù)學(xué)老師這學(xué)期分別用兩種不同的教學(xué)方式試驗(yàn)甲、乙兩個(gè)大一新班(人數(shù)均為60人,入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣)。現(xiàn)隨機(jī)抽取甲、乙兩班各20名的高等數(shù)學(xué)期末考試成績(jī),得到莖葉圖:
(Ⅰ)依莖葉圖判斷哪個(gè)班的平均分高?
(Ⅱ)現(xiàn)從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?6分的同學(xué)至少有一個(gè)被抽中的概率;
(Ⅲ)學(xué)校規(guī)定:成績(jī)不低于85分的為優(yōu)秀,請(qǐng)?zhí)顚懴旅娴?img src="http://thumb.zyjl.cn/pic5/tikupic/9f/e/1yrnk2.png" style="vertical-align:middle;" />列聯(lián)表,并判斷“能否在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)?”
| 甲班 | 乙班 | 合計(jì) |
優(yōu)秀 | | | |
不優(yōu)秀 | | | |
合計(jì) | | | |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)甲班高等數(shù)學(xué)成績(jī)集中于60-90分之間,而乙班數(shù)學(xué)成績(jī)集中于80-100分之間,所以乙班的平均分高.
(Ⅱ) ;
(Ⅲ)在犯錯(cuò)誤的概率不超過0.025的前提下可以認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)。
解析試題分析:(Ⅰ)甲班高等數(shù)學(xué)成績(jī)集中于60-90分之間,而乙班數(shù)學(xué)成績(jī)集中于80-100分之間,所以乙班的平均分高 3分
(Ⅱ)記成績(jī)?yōu)?6分的同學(xué)為,其他不低于80分的同學(xué)為
“從甲班高等數(shù)學(xué)成績(jī)不得低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué)”的一切可能結(jié)果組成的基本事件有:
一共15個(gè),
“抽到至少有一個(gè)86分的同學(xué)”所組成的基本事件有:共9個(gè), 5分
故 7分
(Ⅲ)
9分 甲班 乙班 合計(jì) 優(yōu)秀 3 10 13 不優(yōu)秀 17 10 27 合計(jì) 20 20 40
,因此在犯錯(cuò)誤的概率不超過0.025的前提下可以認(rèn)為成績(jī)優(yōu)秀與教學(xué)方式有關(guān)。 12分
考點(diǎn):莖葉圖,古典概型概率的計(jì)算,卡方檢驗(yàn)。
點(diǎn)評(píng):典型題,統(tǒng)計(jì)中的抽樣方法,頻率直方圖,概率計(jì)算及分布列問題,是高考必考內(nèi)容及題型。解答本題的關(guān)鍵之一,是確定“事件數(shù)”,一般處理方法有“樹圖法”“坐標(biāo)法”,力求不重不漏。本題對(duì)計(jì)算能力要求較高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
每一個(gè)父母都希望自己的孩子能升上比較理想的中學(xué),于是就催生了“擇校熱”,這樣“擇!钡慕Y(jié)果就導(dǎo)致了學(xué)生在路上耽誤的時(shí)間增加了.若某生由于種種原因,每天只能6:15騎車從家出發(fā)到學(xué)校,途經(jīng)5個(gè)路口,這5個(gè)路口將家到學(xué)校分成了6個(gè)路段,每個(gè)路段的騎車時(shí)間是10分鐘(通過路口的時(shí)間忽略不計(jì)),假定他在每個(gè)路口遇見紅燈的概率均為,且該生只在遇到紅燈或到達(dá)學(xué)校才停車.對(duì)每個(gè)路口遇見紅燈的情況統(tǒng)計(jì)如下:
紅燈 | 1 | 2 | 3 | 4 | 5 |
等待時(shí)間(秒) | 60 | 60 | 90 | 30 | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為
求:(1)乙至少擊中目標(biāo)2次的概率;
(2)乙恰好比甲多擊中目標(biāo)2次的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠有甲、乙兩個(gè)生產(chǎn)小組,每個(gè)小組各有四名工人,某天該廠每位工人的生產(chǎn)情況如下表.
| 員工號(hào) | 1 | 2 | 3 | 4 |
甲組 | 件數(shù) | 9 | 11 | 1l | 9 |
| 員工號(hào) | 1 | 2 | 3 | 4 |
乙組 | 件數(shù) | 9 | 8 | 10 | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知連續(xù)型隨機(jī)變量的概率密度函數(shù)
,
(1) 求常數(shù)的值,并畫出的概率密度曲線;
(2)求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
今年我國(guó)部分省市出現(xiàn)了人感染H7N9禽流感確診病例,各地家禽市場(chǎng)受其影響生意冷清.A市雖未發(fā)現(xiàn)H7N9疑似病例,但經(jīng)抽樣有20%的市民表示還會(huì)購(gòu)買本地家禽.現(xiàn)將頻率視為概率,解決下列問題:
(Ⅰ)從該市市民中隨機(jī)抽取3位,求至少有一位市民還會(huì)購(gòu)買本地家禽的概率;
(Ⅱ)從該市市民中隨機(jī)抽取位,若連續(xù)抽取到兩位愿意購(gòu)買本地家禽的市民,或
抽取的人數(shù)達(dá)到4位,則停止抽取,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
口袋中有5個(gè)大小相同的小球,其中1個(gè)小球標(biāo)有數(shù)字“3”,2個(gè)小球標(biāo)有數(shù)字“2”,2個(gè)小球標(biāo)有數(shù)字“1”,每次從中任取一個(gè)小球,取后不放回,連續(xù)抽取兩次。
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為X,求事件的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
盒內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球. 規(guī)定取出1個(gè)紅色球得1分,取出1個(gè)白色球得0分,取出1個(gè)黑色球得-1分 . 現(xiàn)從盒內(nèi)任取3個(gè)球
(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;
(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;
(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
袋中裝著分別標(biāo)有數(shù)字1,2,3,4,5的5個(gè)形狀相同的小球.
(1)從袋中任取2個(gè)小球,求兩個(gè)小球所標(biāo)數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個(gè)小球,記第一次取出的小球所標(biāo)數(shù)字為x,第二次為y,求點(diǎn)滿足的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com