如圖,已知菱形所在平面與直角梯形所在平面互相垂直,,分別是線段,的中點.

(I)求證:平面 平面;
(Ⅱ)點在直線上,且//平面,求平面與平面所成角的余弦值。

(I)先證平面 (Ⅱ)       

解析試題分析:(1)證明:在菱形中,因為,所以是等邊三角形,
是線段的中點,所以
因為平面平面,所以平面,所以;      
在直角梯形中,,,得到:,從而,所以,      
所以平面,又平面,所以平面平面;       
(2)由(1)平面,如圖,分別以所在直線為軸,軸,軸建立空間直角坐標(biāo)系,

,      
設(shè)點的坐標(biāo)是,則共面,所以存在實數(shù)使得:
,
得到:.即點的坐標(biāo)是:,       
由(1)知道:平面的法向量是,設(shè)平面的法向量是,
則:,    
,則,即,
所以,      即平面與平面所成角的余弦值是。 
考點:平面與平面垂直 二面角
點評:本題考查的知識點是平面與平面垂直的判定及二面角,其中熟練掌握直線與平面垂直的判定及性質(zhì),是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點.

(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正方體,分別為各個面的對角線;

(1)求證:;
(2)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在四棱錐中,底面是邊長為2的正方形,側(cè)棱平面,且,為底面對角線的交點,分別為棱的中點

(1)求證://平面;
(2)求證:平面;
(3)求點到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面,,,分別為的中點.

(I)證明:平面
(II)求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,,,點、分別為、的中點.

(1)求直線與平面所成角的正弦值;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,側(cè)面與側(cè)面均為等邊三角形, ,中點.

(Ⅰ)證明:平面;
(Ⅱ)求異面直線BS與AC所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

用平行于棱錐底面的平面去截棱錐,則截面與底面之間的部分叫棱臺。
如圖,在四棱臺中,下底是邊長為的正方形,上底是邊長為1的正方形,側(cè)棱⊥平面.

(Ⅰ)求證:平面;
(Ⅱ)求平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形均為菱形,,且.

(1)求證:;
(2)求證:
(3)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案