已知圓的極坐標方程為ρ2-4ρ·cos+6=0.
(1)將極坐標方程化為普通方程,并選擇恰當(dāng)?shù)膮?shù)寫出它的參數(shù)方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.
(1)普通方程:,圓的參數(shù)方程為:,為參數(shù);
(2).
解析試題分析:(1)圓的普通方程與圓的極坐標方程之間的轉(zhuǎn)換關(guān)系在于圓上一點與極徑,極角間的關(guān)系:,圓的普通方程與圓的參數(shù)方程的關(guān)系也在于此,即圓上一點與圓半徑,圓上點與圓心連線與軸正向夾角的關(guān)系:;(2)利用圓的參數(shù)方程,將轉(zhuǎn)化為關(guān)于的三角函數(shù)關(guān)系求最值,一般將三角函數(shù)轉(zhuǎn)化為的形式.
試題解析:
由圓上一點與極徑,極角間的關(guān)系:,可得,
并可得圓的標準方程:,
所以得圓的參數(shù)方程為:,為參數(shù).
由(1)可知:
故.
考點:(1)圓的普通方程與圓的參數(shù)方程和極坐標之間的關(guān)系;(2)利用參數(shù)方程求最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標系中,圓C的方程為ρ=2sin,以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,直線的參數(shù)方程為 (t為參數(shù)),判斷直線和圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標系的極點是直角坐標系的原點,極軸為軸正半軸.已知曲線的極坐標方程為,曲線的參數(shù)方程為(其中為參數(shù))
(1)求曲線的直角坐標方程和曲線的普通方程;
(2)判斷曲線和曲線的位置關(guān)系;若曲線和曲線相交,求出弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:(>0),已知過點P(-2,-4)的直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于M,N兩點.
(1)寫出曲線C和直線l的普通方程;
(2)若|PM|,|MN|,|PN|成等比數(shù)列,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以直角坐標系的原點為極點,軸的正半軸為極軸,已知點的直角坐標為,點的極坐標為,若直線過點,且傾斜角為,圓以為 圓心、為半徑.
(1)求直線的參數(shù)方程和圓的極坐標方程;
(2)試判定直線和圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標系xOy 中,曲線C1的參數(shù)方程為(為參數(shù))M是C1上的動點,P點滿足,P點的軌跡為曲線C2
(1)求C2的方程
(2)在以O(shè)為極點,x 軸的正半軸為極軸的極坐標系中,射線與C1的異于極點的交點為A,與C2的異于極點的交點為B,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標系中,已知直線的參數(shù)方程是(為參數(shù));以為極點,軸正半軸為極軸的極坐標系中,圓的極坐標方程為.
(1)寫出直線的普通方程與圓的直角坐標方程;
(2)由直線上的點向圓引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
以直角坐標系的原點為極點,軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位。已知直線的極坐標方程為,它與曲線(為參數(shù))相交于兩點A和B,則|AB|=_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com