【題目】已知函數(shù),,曲線在原點處有公共切線

I為函數(shù)的極大值點,求的單調(diào)區(qū)間表示;

II,,求的取值范圍

【答案】單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,;

【解析】

試題分析:首先分別求出,然后利用導(dǎo)數(shù)的幾何意義求得,由此對分、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出;首先利用導(dǎo)數(shù)得到函數(shù)的單調(diào)性,由此得到的最小值,從而得到,設(shè),然后分、、,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性即可得出

試題解析:I由題意知:的定義域為,且,

因為曲線在原點處有公共的切線,故,

解得:,………………2分

所以,

………………3分

時,,函數(shù)在定義域上是減函數(shù),故不滿足題意;4分

時,因為為函數(shù)的極大值點,故由的圖象可知

得:,由得:

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,………………6分

II因為,且,,

時,取得最小值0,所以,即,從而

設(shè),

………………7分

當(dāng)時,因為,所以,

所以上單調(diào)遞增,從而,即,所以………………9分

當(dāng)時,由,

所以,故,即……11分

當(dāng)時,令,則,

顯然上單調(diào)遞增,又,,

所以上存在唯一零點,

當(dāng)時,,所以上單調(diào)遞減,

從而,即,所以上單調(diào)遞減,

從而當(dāng)時,,即,不合題意………………13分

綜上,實數(shù)的取值范圍為………………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】成等差數(shù)列的三個正數(shù)的和等于15,并且這三個數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5

)求數(shù)列{bn}的通項公式;

)數(shù)列{bn}的前n項和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計劃在半徑為200米,圓心角為的扇形廣場內(nèi)(如圖所示),沿邊界修建觀光道路,其中分別在線段上,且兩點間距離為定長.

1)當(dāng)時,求觀光道段的長度;

2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中兩點的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次籃球定點投籃訓(xùn)練中,規(guī)定每人最多投3次,在處每投進(jìn)一球得3分;在處每投進(jìn)一球得2分,如果前兩次得分之和超過3分就停止投籃;否則投第3次,某同學(xué)在處的抽中率,在處的抽中率為,該同學(xué)選擇現(xiàn)在處投第一球,以后都在處投,且每次投籃都互不影響,用表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為:

0

2

3

4

5

0.03

1的值;

2求隨機變量的數(shù)學(xué)期望

3試比較該同學(xué)選擇上述方式投籃得分超過3分與選擇都在處投籃得分超過3分的概率的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.

(1)已知中間三個年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求的值;

(2)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:

年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}中,a2=5,S5=40.等比數(shù)列{bn}中,b1=3,b4=81,

(1)求{an}{bn}的通項公式

(2)令cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進(jìn)行測試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;

(2)比較兩個人的成績,然后決定選擇哪名學(xué)生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,四邊形為正方形,點分別為線段上的點,

1求證:平面平面;

2求證:當(dāng)點不與點重合時,平面;

3當(dāng)時,求點到直線距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在正方體中中,

(1)求異面直線所成的角;

(2)求直線D1B與底面所成角的正弦值;

(3)求二面角大小的正切值.

查看答案和解析>>

同步練習(xí)冊答案