【題目】已知函數(shù)

(1)若函數(shù)的圖像在處的切線垂直于直線,求實(shí)數(shù)的值及直線的方程;

(2)求函數(shù)的單調(diào)區(qū)間;

(3)若,求證:

【答案】(1);(2)見解析;(3)見解析.

【解析】試題分析:(1)函數(shù)求導(dǎo)得,進(jìn)而得切線方程;

(2)函數(shù)求導(dǎo),討論, 兩種情況;

(3)令,由單調(diào)性,求最值即可證得.

試題解析:

(1) ,定義域?yàn)?/span>,

函數(shù)的圖像在處的切線的斜率

切線垂直于直線, ,

, 切點(diǎn)為

切線的方程為,即。

(2)由(1)知: ,

當(dāng)時(shí), ,此時(shí)的單調(diào)遞增區(qū)間是;

當(dāng)時(shí),

,則;若,則

此時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

綜上所述:

當(dāng)時(shí), 的單調(diào)遞增區(qū)間是

當(dāng)時(shí), 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

(3)由(2)知:當(dāng)時(shí), 上單調(diào)遞減

時(shí),

時(shí), ,即

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)a.

(1)f(0)

(2)探究f(x)的單調(diào)性,并證明你的結(jié)論;

(3)f(x)為奇函數(shù),求滿足f(ax)<f(2)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=+x在x=1處的切線方程為2x﹣y+b=0.

(Ⅰ)求實(shí)數(shù)a,b的值;

(Ⅱ)若函數(shù)g(x)=f(x)+x2﹣kx,且g(x)是其定義域上的增函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合A是由且備下列性質(zhì)的函數(shù)組成的:

①函數(shù)的定義域是;②函數(shù)的值域是;

③函數(shù)上是增函數(shù),試分別探究下列兩小題:

(1)判斷函數(shù)數(shù)是否屬于集合A?并簡(jiǎn)要說明理由;

(2)對(duì)于(1)中你認(rèn)為屬于集合A的函數(shù),不等式

是否對(duì)于任意的恒成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,過點(diǎn)的直線交拋物線于兩點(diǎn),坐標(biāo)原點(diǎn)為,且12.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)以為直徑的圓的面積為時(shí),求的面積的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)f(x)mxm(1,1]內(nèi)有且僅有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩圓C1x2y22x6y10C2x2y210x12y450.

(1)求證:圓C1和圓C2相交;

(2)求圓C1和圓C2的公共弦所在直線的方程和公共弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), ,且函數(shù)的圖象關(guān)于直線對(duì)稱。

(1)求函數(shù)在區(qū)間上最大值;

(2)設(shè),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)有唯一零點(diǎn),求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

甲乙兩個(gè)班級(jí)進(jìn)行一門課程的考試,按照學(xué)生考試成績(jī)優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表:

班級(jí)與成績(jī)列聯(lián)表

優(yōu) 秀

不優(yōu)秀

甲 班

10

35

乙 班

7

38

根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為成績(jī)與班級(jí)有關(guān)系?

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案