已知F是拋物線C:y2=4x的焦點,A,B是C上的兩個點,線段AB的中點為M(2,2),則△ABF的面積等于   
【答案】分析:利用點斜式設(shè)過M的直線方程,與拋物線方程聯(lián)立消去y,根據(jù)韋達定理求得x1+x2和x1x2的表達式,根據(jù)AB的中點坐標(biāo)求得k,進而求得直線方程,求得AB的長度和焦點到直線的距離,最后利用三角形面積公式求得答案.
解答:解:設(shè)過M的直線方程為y-2=k(x-2),由
,
由題意,于是直線方程為y=x,x1+x2=4,x1x2=0,
,焦點F(1,0)到直線y=x的距離
∴△ABF的面積是×4×=2
故答案為2
點評:本題主要考查了直線與圓錐曲線的綜合問題.當(dāng)直線與圓錐曲線相交時   涉及弦長問題,常用“韋達定理法”設(shè)而不求計算弦長(即應(yīng)用弦長公式)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F為拋物線C:y=x2的焦點,A(x1,y1),B(x2,y2)是拋物線C上的兩點,且x1<x2
(1)若
FA
FB
(λ∈R),則λ
為何值時,直線AB與拋物線C所圍成的圖形的面積最?該面積的最小值是多少?
(2)若直線AB與拋物線C所圍成的面積為
4
3
,求線段AB的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:貴陽二模 題型:填空題

已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:貴陽二模 題型:單選題

已知F是拋物線C:y2=4x的焦點,直線l:y=k(x+1)與拋物線C交于A,B兩點,記直線FA,F(xiàn)B的斜率分別為k1,k2,則k1+k2的值等于( 。
A.-2B.-1C.0D.1

查看答案和解析>>

同步練習(xí)冊答案