已知函數(shù)f(x)=axcosx(a>0且a≠1),則導(dǎo)函數(shù)f′(x)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:直接利用導(dǎo)數(shù)的運(yùn)算法則及基本初等函數(shù)的導(dǎo)數(shù)公式得答案.
解答: 解:∵f(x)=axcosx(a>0且a≠1),
∴f′(x)=(axlna)cosx-axsinx.
故答案為:(axlna)cosx-axsinx.
點(diǎn)評:本題考查了導(dǎo)數(shù)的運(yùn)算,考查了基本初等函數(shù)的導(dǎo)數(shù)公式,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)在(0,+∞)單調(diào)遞減,則滿足f(
1
x
)<f(1)的實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log2(5-x),x≤1
f(x-1)+1,x>1
,則f(2014)=(  )
A、2012B、2013
C、2014D、2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2
ax+b
(a,b為常數(shù)),且方程f(x)-x+12=0有兩個實(shí)數(shù)根3和4.
(1)求f(x)的解析式;
(2)若f(x)=-2m的兩根為x1,x2,求x12+x22的取值范圍;
(3)解不等式f(x)≥
1
2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,Sn為數(shù)列{an}的前n項(xiàng)和,若3a3=a13,則
S10
S5
等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2a-2<x<a},B={x|
3
x-1
≥1},且A⊆∁RB,
(1)求集合∁RB;      
(2)求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(θ)=
sinθ-1
cosθ-2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+bx
x
,g(x)=ax.
(Ⅰ)當(dāng)a=b=1時,利用函數(shù)單調(diào)性的定義證明f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù);
(Ⅱ)若函數(shù)f(x)+g(x)在區(qū)間(1,+∞)上是單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x+3
-
1
x
的定義域?yàn)?div id="zyalsv2" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊答案