【題目】下列命題中正確的是(
A.若ξ服從正態(tài)分布N(0,2),且P(ξ>2)=0.4,則P(0<ξ<2)=0.2
B.x=1是x2﹣x=0的必要不充分條件
C.直線(xiàn)ax+y+2=0與ax﹣y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

【答案】C
【解析】解:A.P(ξ>2)=0.4,則P(0<ξ<2)= ,故A錯(cuò)誤,
B.由x2﹣x=0得x=1或x=0,則x=1是x2﹣x=0的充分不必要條件,故B錯(cuò)誤,
C.直線(xiàn)ax+y+2=0與ax﹣y+4=0垂直的充要條件為a2﹣1=0,解得a=±1,故C正確,
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0且y≠0,則xy≠0,故D錯(cuò)誤,
故選:C.
【考點(diǎn)精析】本題主要考查了命題的真假判斷與應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐PABC中,PA⊥底面ABCDAD∥BC,AB=AD=AC=3PA=BC=4,M為線(xiàn)段AD上一點(diǎn),AM=2MDNPC的中點(diǎn).

)證明MN∥平面PAB;

)求直線(xiàn)AN與平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的結(jié)果是(
A.﹣2
B.
C.
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)0<a<1,已知函數(shù)f(x)= ,若對(duì)任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個(gè)零點(diǎn),則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】屆亞運(yùn)會(huì)于日至日在中國(guó)廣州進(jìn)行,為了做好接待工作,組委會(huì)招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛(ài)運(yùn)動(dòng),其余不喜愛(ài).

根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:


喜愛(ài)運(yùn)動(dòng)

不喜愛(ài)運(yùn)動(dòng)

總計(jì)


10


16


6


14

總計(jì)



30

(2)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?

(3)如果從喜歡運(yùn)動(dòng)的女志愿者中(其中恰有人會(huì)外語(yǔ)),抽取名負(fù)責(zé)翻譯工作,則抽出的志愿者中人都能勝任翻譯工作的概率是多少?

:K2=

P(K2≥k)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具城進(jìn)行促銷(xiāo)活動(dòng),促銷(xiāo)方案是:顧客每消費(fèi)滿(mǎn)1000元,便可以獲得獎(jiǎng)券一張,每張獎(jiǎng)券中獎(jiǎng)的概率為,若中獎(jiǎng),則家具城返還顧客現(xiàn)金1000元,某顧客購(gòu)買(mǎi)一張價(jià)格為3400元的餐桌,得到3張獎(jiǎng)券,設(shè)該顧客購(gòu)買(mǎi)餐桌的實(shí)際支出為(元);

(1)求的所有可能取值;

(2)求的分布列和數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某旅游為了解2015年國(guó)慶節(jié)期間參加某境外旅游線(xiàn)路的游客的人均購(gòu)物消費(fèi)情況,隨機(jī)對(duì)50人做了問(wèn)卷調(diào)查,得如下頻數(shù)分布表:

人均購(gòu)物消費(fèi)情況

[0,2000]

(2000,4000]

(4000,6000]

(6000,8000]

(8000,10000]

額數(shù)

15

20

9

3

3

附:臨界值表參考公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:K2= ,其中n=a+b+c+d.

(1)做出這些數(shù)據(jù)的頻率分布直方圖并估計(jì)次境外旅游線(xiàn)路游客的人均購(gòu)物的消費(fèi)平均值;
(2)在調(diào)查問(wèn)卷中有一項(xiàng)是“您會(huì)資助失學(xué)兒童的金額?”,調(diào)查情況如表,請(qǐng)補(bǔ)全如表,并說(shuō)明是否有95%以上的把握認(rèn)為資助數(shù)額多于或少于500元和自身購(gòu)物是否到4000元有關(guān)?

人均購(gòu)物消費(fèi)不超過(guò)4000元

人均購(gòu)物消費(fèi)超過(guò)4000元

合計(jì)

資助超過(guò)500元

30

資助不超過(guò)500元

6

合計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中

(1)求的長(zhǎng);

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器在一天內(nèi)發(fā)生故障的概率為p.已知這臺(tái)機(jī)器在3個(gè)工作日至少一天不發(fā)生故障的概率為0.999.

(1)求p;

(2)若這臺(tái)機(jī)器一周5個(gè)工作日不發(fā)生故障,可獲利5萬(wàn)元;發(fā)生一次故障任可獲利2.5萬(wàn)元;發(fā)生2次故障的利潤(rùn)為0元;發(fā)生3次或3次以上故障要虧損1萬(wàn)元.這臺(tái)機(jī)器一周內(nèi)可能獲利的均值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案