【題目】已知函數(shù)f(x)=sin ωx-cos ωx(ω>0)的最小正周期為π.
(1)求函數(shù)y=f(x)圖象的對(duì)稱軸方程;
(2)討論函數(shù)f(x)在上的單調(diào)性.
【答案】(1) ;(2)答案見(jiàn)解析.
【解析】試題分析:(1)f(x)=sin ωx-cos ωx=,得ω=2,2x-=kπ+,得x=;(2)f(x)的單調(diào)增區(qū)間為,所以單調(diào)增區(qū)間為,其單調(diào)減區(qū)間為.
試題解析:
(1)∵f(x)=sin ωx-cos ωx=,且T=π,∴ω=2,
于是f(x)=.
令2x-=kπ+ (k∈Z),得x= (k∈Z),
即函數(shù)y=f(x)圖象的對(duì)稱軸方程為x= (k∈Z).
(2)令2kπ-≤2x-≤2kπ+ (k∈Z),
得函數(shù)f(x)的單調(diào)增區(qū)間為 (k∈Z).
又x∈,
令k=0,得函數(shù)f(x)在上的單調(diào)增區(qū)間為,其單調(diào)減區(qū)間為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)及圓.
(1)設(shè)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),當(dāng)時(shí),求以線段為直徑的圓的方程;
(2)設(shè)直線與圓交于兩點(diǎn),是否存在實(shí)數(shù),使得過(guò)點(diǎn)的直線垂直平分弦?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為, ,直線交橢圓于, 兩點(diǎn), 的周長(zhǎng)為16, 的周長(zhǎng)為12.
(1)求橢圓的標(biāo)準(zhǔn)方程與離心率;
(2)若直線與橢圓交于兩點(diǎn),且是線段的中點(diǎn),求直線的一般方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某山區(qū)外圍有兩條相互垂直的直線型公路,為進(jìn)一步改善山區(qū)的交通現(xiàn)狀,計(jì)劃修建一條連接兩條公路和山區(qū)邊界的直線型公路,記兩條相互垂直的公路為l1,l2,山區(qū)邊界曲線為C,計(jì)劃修建的公路為l,如圖所示,M,N為C的兩個(gè)端點(diǎn),測(cè)得點(diǎn)M到l1,l2的距離分別為5千米和40千米,點(diǎn)N到l1,l2的距離分別為20千米和2.5千米,以l2,l1所在的直線分別為x,y軸,建立平面直角坐標(biāo)系xOy,假設(shè)曲線C符合函數(shù)y= (其中a,b為常數(shù))模型.
(1)求a,b的值;
(2)設(shè)公路l與曲線C相切于P點(diǎn),P的橫坐標(biāo)為t.
①請(qǐng)寫出公路l長(zhǎng)度的函數(shù)解析式f(t),并寫出其定義域;
②當(dāng)t為何值時(shí),公路l的長(zhǎng)度最短?求出最短長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ-2cos θ-6sin θ+=0,直線l的參數(shù)方程為 (t為參數(shù)).
(1)求曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),點(diǎn)P的坐標(biāo)為(3,3),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知是直角梯形, , , , , 平面.
(Ⅰ)上是否存在點(diǎn)使平面,若存在,指出的位置并證明,若不存在,請(qǐng)說(shuō)明理由;(Ⅱ)證明: ;
(Ⅲ)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方體中, 為的中點(diǎn),如圖所示.
(1) 證明: 平面;
(2) 求平面與平面所成銳二面角的大小的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·無(wú)錫模擬)已知函數(shù)f(x)滿足,當(dāng)x∈[0,1]時(shí),f(x)=x.若g(x)=f(x)-mx-2m在區(qū)間(-1,1]上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com