【題目】“x≠1”是“x2﹣3x+2≠0”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人參加數(shù)學(xué)競賽,四人在成績公布前作出如下預(yù)測:
甲預(yù)測說:獲獎?wù)咴谝摇⒈、丁三人中?/span>
乙預(yù)測說:我不會獲獎,丙獲獎
丙預(yù)測說:甲和丁中有一人獲獎;
丁預(yù)測說:乙的猜測是對的
成績公布后表明,四人的猜測中有兩人的預(yù)測與結(jié)果相符.另外兩人的預(yù)測與結(jié)果不相符,已知有兩人獲獎,則獲獎的是()
A.甲和丁
B.乙和丁
C.乙和丙
D.甲和丙
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人中,一人是董事長,一人是總經(jīng)理,一人是秘書,已知:丙的年齡比秘書的大,甲的年齡和總經(jīng)理不同;總經(jīng)理的年齡比乙小,根據(jù)以上情況,下列判斷正確的是( )
A.甲是董事長,乙是秘書,丙是總經(jīng)理B.甲是秘書,乙是總經(jīng)理,丙是董事長
C.甲是秘書,乙是董事長,丙是總經(jīng)理D.甲是總經(jīng)理,乙是秘書,丙是董事長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a+b>0,b<0,那么a,b,﹣a,﹣b的大小關(guān)系是( )
A.a>b>﹣b>﹣a
B.a>﹣b>﹣a>b
C.a>﹣b>b>﹣a
D.a>b>﹣a>﹣b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣3≤x<1},B={x|y=lg(x﹣x2)},則A∩B=( )
A.(0,1]B.(0,1)C.[0,1]D.[﹣3,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點(diǎn)及斜面任兩邊中點(diǎn)的截面均稱為斜面的“中面”.已知直角三角形具有性質(zhì):斜邊長等于斜邊的中線長的2倍.類比上述性質(zhì),直角三棱錐具有性質(zhì): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三名學(xué)生參加數(shù)學(xué)競賽,他們獲得一、二、三等獎各一人,對于他們分別獲得幾等獎,其他學(xué)生作了如下的猜測:
猜測1:甲獲得二等獎,丙獲得三等獎;
猜測2:甲獲得三等獎,乙獲得二等獎;
猜測3:甲獲得一等獎,丙獲得二等獎;
結(jié)果,學(xué)生們的三種猜測各對了一半,則甲、乙、丙所獲得的獎項(xiàng)分別是( )
A.一等、二等、三等B.二等、一等、三等
C.二等、三等、一等D.三等、二等、一等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】反證法證明的關(guān)鍵是在正確的假設(shè)下得出矛盾,這個(gè)矛盾可以是( )
①與已知矛盾;②與假設(shè)矛盾;③與定義、定理、公理、法則矛盾;④與事實(shí)矛盾
A.①②
B.②③
C.①②③
D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com