本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設矩陣(其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為

(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;

(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

(3)(本小題滿分7分)選修4-5:不等式選講

設不等式的解集為M.

(I)求集合M;

(II)若a,b∈M,試比較ab+1與a+b的大。

(1)選修4—2:矩陣與變換

    本小題主要考查矩陣與交換等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,滿分7分。

解:(I)設矩陣M的逆矩陣,則

,所以

所以

故所求的逆矩陣

(II)設曲線C上任意一點,

它在矩陣M所對應的線性變換作用下得到點,

又點在曲線上,

所以,,

為曲線C的方程,

又已知曲線C的方程為

(2)選修4—4:坐標系與參數(shù)方程

本小題主要考查極坐標與直角坐標的互化、橢圓的參數(shù)方程等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想。滿分7分。

解:(I)把極坐標系下的點化為直角坐標,得P(0,4)。

因為點P的直角坐標(0,4)滿足直線的方程,

所以點P在直線上,

(II)因為點Q在曲線C上,故可設點Q的坐標為,

從而點Q到直線的距離為

由此得,當時,d取得最小值,且最小值為

(3)選修4—5:不等式選講

本小題主要考查絕對值不等式等基礎知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想,滿分7分。

解:(I)由

所以

(II)由(I)和,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關系;
(Ⅱ)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分
(1)選修4-2:矩陣與變換
變換T是將平面上每個點M(x,y)的橫坐標乘2,縱坐標乘4,變到點M′(2x,4y).
(Ⅰ)求變換T的矩陣;
(Ⅱ)圓C:x2+y2=1在變換T的作用下變成了什么圖形?
(2)選修4-4:坐標系與參數(shù)方程
已知極點與原點重合,極軸與x軸的正半軸重合.若曲線C1的極坐標方程為:5ρ2-3ρ2cos2θ-8=0,直線?的參數(shù)方程為:
x=1-
3
t
y=t
(t為參數(shù)).
(Ⅰ)求曲線C1的直角坐標方程;
(Ⅱ)直線?上有一定點P(1,0),曲線C1與?交于M,N兩點,求|PM|.|PN|的值.
(3)選修4-5:不等式選講
已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(Ⅱ)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三第八次月考理科數(shù)學試卷 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分

(1)(本小題滿分7分)選修4-2:矩陣與變換

變換是將平面上每個點的橫坐標乘,縱坐標乘,變到點.

(Ⅰ)求變換的矩陣;

(Ⅱ)圓在變換的作用下變成了什么圖形?

(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

已知極點與原點重合,極軸與x軸的正半軸重合.若曲線的極坐標方程為:,直線的參數(shù)方程為:為參數(shù)).

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)直線上有一定點,曲線交于M,N兩點,求的值.

(3)(本小題滿分7分)選修4-5:不等式選講

 已知為實數(shù),且

(Ⅰ)求證:

(Ⅱ)求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年普通高中招生考試福建省高考理科數(shù)學 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題做答,滿分14分,如果多做,則按所做的前兩題計分,做答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中。

(1)(本小題滿分7分)選修4-2:矩陣與變換

設矩陣 (其中a>0,b>0).

(I)若a=2,b=3,求矩陣M的逆矩陣M-1;

(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年福建省高考數(shù)學試卷(理科)(解析版) 題型:解答題

本題設有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設矩陣 (其中a>0,b>0).
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+y2=1在矩陣M所對應的線性變換作用下得到曲線C’:,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
(I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;
(II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設不等式|2x-1|<1的解集為M.
(I)求集合M;
(II)若a,b∈M,試比較ab+1與a+b的大小.

查看答案和解析>>

同步練習冊答案