D.
【命題意圖】本題考查雙曲線的性質(zhì),中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題
如圖,D,E分別是△ABC邊AB,AC的中點(diǎn),直線DE交△ABC的外接圓與F,G兩點(diǎn),若CF∥AB,證明:
(Ⅰ) CD=BC;
(Ⅱ)△BCD∽△GBD.
【命題意圖】本題主要考查線線平行判定、三角形相似的判定等基礎(chǔ)知識(shí),是簡單題.
【解析】(Ⅰ) ∵D,E分別為AB,AC的中點(diǎn),∴DE∥BC,
∵CF∥AB, ∴BCFD是平行四邊形,
∴CF=BD=AD, 連結(jié)AF,∴ADCF是平行四邊形,
∴CD=AF,
∵CF∥AB, ∴BC=AF, ∴CD=BC;
(Ⅱ) ∵FG∥BC,∴GB=CF,
由(Ⅰ)可知BD=CF,∴GB=BD,
∵∠DGB=∠EFC=∠DBC, ∴△BCD∽△GBD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
D.
【命題意圖】本題考查二元一次不等式(組)表示的平面區(qū)域、直線的斜率、三角形面積公式等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想,容易題.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題
已知曲線的參數(shù)方程是(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線:的極坐標(biāo)方程是=2,正方形ABCD的頂點(diǎn)都在上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為(2,).
(Ⅰ)求點(diǎn)A,B,C,D的直角坐標(biāo);
(Ⅱ)設(shè)P為上任意一點(diǎn),求的取值范圍.
【命題意圖】本題考查了參數(shù)方程與極坐標(biāo),是容易題型.
【解析】(Ⅰ)由已知可得,,
,,
即A(1,),B(-,1),C(―1,―),D(,-1),
(Ⅱ)設(shè),令=,
則==,
∵,∴的取值范圍是[32,52]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(課標(biāo)卷解析版) 題型:解答題
如圖,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)。
(I) 證明:平面⊥平面
(Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.
【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質(zhì)及幾何體的體積計(jì)算,考查空間想象能力、邏輯推理能力,是簡單題.
【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面, 又∵面,∴,
由題設(shè)知,∴=,即,
又∵, ∴⊥面, ∵面,
∴面⊥面;
(Ⅱ)設(shè)棱錐的體積為,=1,由題意得,==,
由三棱柱的體積=1,
∴=1:1, ∴平面分此棱柱為兩部分體積之比為1:1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com