已知圓C:x2+(y-2)2=5,直線l:mx-y+1=0.
(1)求證:對m∈R,直線l與圓C總有兩個不同交點(diǎn);
(2)若圓C與直線相交于點(diǎn)A和點(diǎn)B,求弦AB的中點(diǎn)M的軌跡方程.
(1)證明:法一:直線系l:mx-y+1=0恒過定點(diǎn)(0,1),且點(diǎn)(0,1)在圓C:x2+(y-2)2=5內(nèi)部,所以對m∈R,直線l與圓C總有兩個不同交點(diǎn).--------3分
法二:直線方程與圓的方程聯(lián)立,消去y得(m2+1)x2-2mx-4=0,
∵Δ=4m2+16(m2+1)=20m2+16>0,∴對m∈R,直線l與圓C總有兩個不同交點(diǎn).
法三:圓心到直線的距離d==≤1<,所以對m∈R,直線l與圓C總有兩個不同交點(diǎn).
(2)解:設(shè)A(x1,y1),B(x2,y2),M(x,y),-
由方程(m2+1)x2-2mx-4=0,得x1+x2=,
∴x=,由mx-y+1=0,得m=,
代入x=,得x[()2+1]=,
化簡得x2+(y-)2=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知無窮等比數(shù)列的前項(xiàng)和的極限存在,且,,則數(shù)列各項(xiàng)的和為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)拋物線的焦點(diǎn)F是雙曲線右焦點(diǎn).若M與N的公共弦AB恰好過F,則雙曲線N的離心率e的值為
A. B. C. D .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com