【題目】已知函數(shù)f(x)= ,且f(1)=﹣1.
(1)求f(x)的解析式,并判斷它的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性并證明.
【答案】
(1)解:可求得a=﹣2,
f(x)= =﹣2x+
因?yàn)閒(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞)
且f(﹣x)=2x﹣ =﹣f(x),
所以f(x)是奇函數(shù)
(2)解:f(x)在(0,+∞)上的單調(diào)遞減,
證明:設(shè)任意0<x1<x2,
則f(x1)﹣f(x2)=﹣2x1+ +2x2﹣ =(x2﹣x1)(2+ )
因?yàn)?<x1<x2 所以x2﹣x1>0且2+ >0,
所以 f(x1)>f(x2)
所以 f(x)在(0,+∞)上的單調(diào)遞減
【解析】(1)將a=﹣2代入f(x),求出函數(shù)的定義域,得到f(﹣x)=﹣f(x),從而判斷出函數(shù)的奇偶性;(2)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性即可.
【考點(diǎn)精析】掌握函數(shù)單調(diào)性的判斷方法和函數(shù)的奇偶性是解答本題的根本,需要知道單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為直角梯形, , ,平面底面, 為的中點(diǎn), 是棱上的點(diǎn), , , .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角大小為,設(shè),試確定的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)(),其準(zhǔn)線(xiàn)方程為,直線(xiàn)過(guò)點(diǎn)()且與拋物線(xiàn)交于兩點(diǎn), 為坐標(biāo)原點(diǎn).
(1)求拋物線(xiàn)方程,并證明:的值與直線(xiàn)傾斜角的大小無(wú)關(guān);
(2)若為拋物線(xiàn)上的動(dòng)點(diǎn),記的最小值為函數(shù),求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四個(gè)命題:
①f(x)=x3﹣3x2是增函數(shù),無(wú)極值.
②f(x)=x3﹣3x2在(﹣∞,2)上沒(méi)有最大值
③由曲線(xiàn)y=x,y=x2所圍成圖形的面積是
④函數(shù)f(x)=lnx+ax存在與直線(xiàn)2x﹣y=0平行的切線(xiàn),則實(shí)數(shù)a的取值范圍是(﹣∞,2)
其中正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= x3+x,x∈R,若至少存在一個(gè)實(shí)數(shù)x使得f(a﹣x)+f(ax2﹣1)<0成立,a的范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=ex-ax-1,其中e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2-e)x.
①求函數(shù)h(x)=f (x)-g (x)的單調(diào)區(qū)間;
②若函數(shù)的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1,x2∈[0,2],使得f(x1)=f(x2),且|x1-x2|≥1,
求證:e-1≤a≤e2-e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P和0是兩個(gè)集合,定義集合PQ={x|x∈P,且x≠Q(mào)},如果P={x|log2x<1},Q={x||x﹣2|<1},那么PQ等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)滿(mǎn)足:f(x)+f′(x)>1,f(0)=4,則不等式exf(x)>ex+3(其中e為自然對(duì)數(shù)的底數(shù))的解集為( )
A.(0,+∞)
B.(﹣∞,0)∪(3,+∞)
C.(﹣∞,0)∪(0,+∞)
D.(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=k﹣ (其中k為常數(shù));
(1)求:函數(shù)的定義域;
(2)證明:函數(shù)在區(qū)間(0,+∞)上為增函數(shù);
(3)若函數(shù)為奇函數(shù),求k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com